

Abstract

Many big data applications including dictionary-based

decoding, deep packet inspection, Bioinformatics (DNA

Alignment), and JSON/XML processing depend on fast

pattern matching – well-known as difficult to accelerate.

We have designed a novel heterogeneous architecture,

called the Generalized Pattern Matching micro-engine

(GenPM), to accelerate FSM-based applications. GenPM

balances programmability and performance, employing a

novel micro-architecture and software interface. We

implement and evaluate GenPM in a 32nm TSMC process

using a Snort network monitoring workload. Results show

64-way, 16-step GenPM can reduce instruction count by

>1800x, effectively eliminating instruction management as

a bottleneck. Remarkably, this reduction produces >2400x

performance increase and energy efficiency benefits of

980x. Less aggressive GenPM’s, such as 8-way,16-step

achieve 200-fold instruction reduction, 300-fold

performance increase, and 170-fold energy efficiency

benefit. GenPM approaches ASIC efficiency, while

maintaining programmability.

1. Introduction
Endemic to the explosion of big data is the need to find

patterns in a sea of unstructured, noisy, and complex data.

Thus, pattern-matching applications are essential tools, and

must operate at high speed and efficiency to be useful at

“big data” scale. Canonically, pattern-matching uses

regular expressions (RE) to express search patterns, and

then extracts all sets of the data that match the regular

expressions. For example, pattern-matching applied to

network flows might look for attack patterns or applied to

flow contents look for virus signatures (network monitoring

and intrusion detection). Network flows at 100Gig

comprise a Petabyte/day. In bioinformatics, a human

genome is several gigabytes, but many plant genomes are

much larger, and pattern-based search is a central

computational tool (bioinformatics). Content search over

XML/JSON databases also benefits from rich pattern-

matching capabilities (data mining, high frequency trading,

deep content search). High performance for such data

intensive applications has been the subject of extensive

research [1, 2, 3, 4, 5].

While here our focus is pattern-matching, our broader focus

is the design of a new class of energy-efficient and

programmable microarchitectures capable of servicing a

wide variety of pattern matching applications. With the

benefits of Dennard Scaling [6] fading, our approach is to

increase both performance and energy efficiency with a

customized architecture.

Many pattern-matching accelerators have been proposed,

exploiting ASIC, FPGA, GPU or multi-core approaches [7,

8, 9, 10]. Recent publications also explore new algorithmic

and software approaches [11,12], demonstrating the

relevance and central importance of the problem. While

each of these approaches improves performance, relative to

a traditional single-core CPU, they are all far from the

maximum achievable performance. We will show in

GenPM how large this gap is. GenPM, a customized core

that exploits local memory, SIMD operations, and complex

instructions to accelerates pattern-matching on big data.

Our results show that performance can approach that of

ASIC’s while maintaining programmability. Specific

contributions include:

 Design of a novel micro-architecture for generalized

pattern matching and ISA (GenPM),

 Implementation of GenPM in 32nm CMOS enabling

rigorous timing and energy evaluation,

 Evaluation of GenPM performance using the RegEx

software system with a standard SNORT workload,

demonstrating 36x to as much as 2500x performance

improvement(depends on GenPM configuration),

 Evaluation of GenPM energy use showing as much as

31x to 980x improvement (depends on GenPM config),

 Area and energy efficiency studies that show GenPM

can scale to 2.6 Trillion DFAops/second in a full chip-

scale design,

The remainder of the paper is organized as follows.

Section 2 introduces key background, and Section 3

introduces the GenPM architecture and its use. Section 4

describes the evaluation and Section 5 shows detailed

discussion with related work. Section 6 summarizes and

suggests directions for future work.

Generalized Pattern Matching Micro-Engine

 Yuanwei Fang, Raihan ur Rasool†, Dilip Vasudevan, Andrew A. Chien*

 Dept. of Computer Science Dept. of Computer Science† MCS Division*

 University of Chicago King Faisal University† Argonne National Laboratory*

 {fywkevin,dilipv}@cs.uchicago.edu rrasool@kfu.edu.sa† achien@cs.uchicago.edu*

2. Background
Deterministic Finite Automata(DFA) is a natural formalism

for regular expressions and has a wide range of application.

Deep Content Inspection involves thorough searching of

packets payloads against thousands of rules to identify

intrusive or malicious behavior at wire speed. DCI systems

employ REs or simple strings to express the patterns using

DFAs due to their ability to do high speed matching in fast

pace networks.

XML is currently the most popular format for exchanging

and representing data on the web. As DFA takes constant

amount of time to process one (SAX) event, several recent

works employ it to represent queries [13].

For bioinformatics applications, DFA is used for Gene

finding, Motif finding, protein secondary sequence

prediction, splice site predictions, restriction site

finding and generally in biological data mining [14].

3. Generalized Pattern Matching Engine
We describe microarchitecture and instruction set of the

Generalized Pattern Matching Micro-Engine (GenPM).

3.1 RegEx on GenPM
Our prototype pattern-matching system uses the RegEx

program as a front-end, uses its compiler to create efficient

DFA tables which are then implementation by GenPM.

First, RegEx Processor [15] converts the RE expression to

DFA tables. Next, GenPM translator rewrites the DFA table

generating a format specifically compatible with GenPM’s

matching unit. It takes the DFA from RegEx combining the

acceptance and state.

3.2 Microarchitecture
GenPM executes normal instructions such as ALU, Load,

Store, Branch, as well as special instructions for pattern-

matching acceleration. It includes a multi-bank local

memory that is used to store DFA tables (but can also be

used for many other things) as well as a traditional memory

hierarchy. The critical parameters for the GenPM

architecture are vector length, local memory parallelism,

and DFA-steps. Vector instructions are used to implement

multiple DFAs process against one input steam.

GenPM retrieves string data from the main memory, and its

Block Mover loads DFA tables from main memory into the

local memory. The Block Mover is a DMA engine that

efficiently transfers data between main memory and local

memory, operating autonomously without stalling the main

pipeline. It operates at low priority, stalling if memory

bandwidth is unavailable. To begin processing a stream

against a set of DFA’s, a programmer initializes a vector

register with the base addresses of a set of DFAs. At each

step, the matching unit generates a set of next state

addresses. The 6-stage GenPM pipeline is shown in Figure

1. Special registers and purpose are shown in Table 1.

3.2.1 DFA parallelism
GenPM exposes fine-grained DFA parallelism through a

vector instruction interface proportional to vector length (or

GenPM “width”). For each state transition, GenPM takes

the DFA base address in the GM_VEC_BASE and

calculates the target state addresses in parallel. This

parallelism, combined with efficient state encoding and

sequence (a pointer address rather than program counter),

dramatically reduces instruction counts.

Figure 1. Microarchitecture of GenPM

Resource Function spec. Description

Local Memory 1MB--Local

Memory

Local Memory for micro-engines.

Store DFA tables

GM_VEC_STATE 1024bit--Vector

Register

Store each DFA table’s current

state

GM_VEC_ACC 1024bit--Vector

Register

Record acceptance for 8-64 DFA

table for 1 -16steps

GM_VEC_BASE 1024bit--Vector

Register

Base addresses for a set of 8-64

DFA tables

GM_VEC_BUF 1024bit--String

buffer

Holds input string that need to be

processed

 Table 1. GenPM special registers

3.2.2 Matching unit, Multi-step
The matching unit implements parallel DFA state sequence

and acceptance testing. It can advance a number of DFAs

forward 1, 8, or 16 steps. In addition to implementing

multi-step DFA sequence, it checks against acceptance

states, flagging those DFA’s that have accepted the input

string. These matches are reflected as a vector of values,

which is then parsed by software to give precise

information (which DFA, exactly which point in the string)

under software control.

3.2.3 Local memory
GenPM system performance also depends intimately on the

local memory latency and parallelism. We studied single

bank and multi-bank memories, for instance, an 8-wide

GenPM can process 8 DFA tables simultaneously; given

sufficient memory parallelism is available. If the local

memory has 8 banks -- each with a read and a write port --

and there is no bank contention, minimum latency is

achieved.

GenPM leaves DFA table allocation to software, and

presumes non-conflicting layout can be achieved. If

conflicts occur, performance is degraded, but hardware

ensures correctness. Local memory addresses is embedded

in the processors regular address space for convenient

access. Each DFA is laid out contiguously in the address

space with 256 entries (for every possible input) per state.

We combine each state transition and accept rule with 16

bits. Thus, every DFA table is N*512 bytes, N is the

number of states in the DFA. We plan to study efficient

compressed representations in future work.

3.2.4 Direct Network for Local Memory
Multi-bank memories can be built to match processor clock

rates for small numbers of banks, but as the number of

banks increases, network latency is a challenge. To avert

any impact on typical case performance, we implemented a

2-level direct network of 8x8 switches for the 64-wide

GenPM as shown in Figure 1. Typical case for pattern

matching achieves local, non-conflicting access.

3.3 GenPM Instruction Set Architecture
GenPM extends a simple 16/32-bit RISC instruction set,

adding ten special 32-bit instructions to accelerate pattern-

matching applications. We outline the key instructions.

GMVSNEXT which provides parallel processing among

DFA tables and multi-step pattern matching. It receives 3

input parameters: buffer pointer, buffer index, and number

of steps to process. Buffer pointer points to the latest

position in string buffer vector register, buffer index

chooses which buffer vector to read from after employing

“double buffering” scheme.

GMVSACC tests whether there are acceptances among

DFA tables, if accept then it returns the number of

acceptances, and the program goes into the hit handler.

GMVSCONT takes out the value which records the

matching length for current matching string.

GMLD,GMST loads/stores data block from/to the main

memory to/from the local memory.

GMBUFLD,GMBSLD loads input string and the base

address of each DFA table into corresponding vector

register.

GMSTRIDEBACK retrieves DFA states before current

multi-step transitions when GenPM hits an accept rule in

multiple step process. This enables recomputing the fine-

grained state transitions during the last multi-step procss

and tell the exact matcing location.

GMCHECK check the GenPM’s status register of multi-

cycle executions for futher process.

GMVSCLEAR reset all the GenPM registers to zero.

4. Evaluation
We evaluate the performance and energy efficiency of

GenPM, comparing to a 32-bit, 6-stage in-order single issue

RISC processor (RISC32). We implemented GenPM micro-

engine based on RISC32 using Synopsys CAD flow using a

32-nm TSMC library. Local memory energy models are

based on CACTI 6 [16]. We integrate MARSSx86[17] and

DRAMsim2[18] into our memory system model.

RegEx software is used with test patterns from SNORT [19]

and real network traces. We divide Snort set into those

requiring regular expressions and use RegEx to generate

DFA tables. DFA’s small enough to fits into a local

memory bank are chosen. Detail about test rules see

Appendix A.

4.1 Hardware Configuration
GenPM and baseline RISC processor has a 32KB 8-way L1

instruction cache and a 24KB 6-way L1 data cache, an 8-

way 512 KB L2 cache and a 4GB DDR3 DRAM system.

The total local memory capacity for GenPM is 1MB.

GenPM designs vary the vector length (GenPM width), the

number of local memory banks and multi-step length.

4.2 Metrics
We define energy efficiency as the total energy consumed

for a given workload and operations/joule.

 Workload/energy = Throughput/Watt

=Num_DFA×processed_characters/Joule

We define system throughput as DFA steps per second that

is, the full chip capacity computing ability to process the

number of input characters per second for all parallel DFA

matching.

Throughput = Num_DFA×Processed_characters/execution_time

4.3 Performance

 Figure 2. GenPM work per instruction for 10KB trace

We measured the kernel instruction count of Simple

DFA_RE in GenPM and RISC32 with a 10KB input

network trace and 64 Snort patterns. Figure 2 shows the

work per instruction for GenPM with (8 or 64) local

memory banks and same vector length with (1, 8, or 16-

step) operations.

The result suggests that GenPM can significantly reduce

instruction count. Even GenPM’s instruction count for 8-

way GenPM with 1-step execution is 26x times lower than

RISC baseline. If no local memory contention arises,

GenPM achieves 8 instructions overhead per vector/multi-

step operation. Because per Amdahl’s law this overhead

limits performance, increasing steps/instruction can further

increase single stream performance towards the hard limit

of 1 character per cycle. In the most aggressive 64-way, 16-

step GenPM configuration (with 64-bank local memory),

achieves 1800X fewer instructions than the baseline

RISC32.

 Figure 3.Performance impact of memory parallelism on GenPM

with 8-step and 8 vector length

Exploiting enough parallelism (multi-local memory banks),

further improves the performance (see Figure 3), with

benefits as large as an additional 5x. Figure 3 shows the

relative performance of GenPM with 1, 4, or 8 local

memory banks on an 8-way (vector length), 8-step GenPM.

By employing multi-step operation, GenPM reduces while-

loop condition check cost as well as gmvsnext instruction

count. Figure 2 also shows the instruction benefit of multi-

step operation length over different levels of GenPM DFA

parallelism.

The total execution time includes the scalar instructions and

the multi-step (multi-cycle). Figure 4 shows the speedup of

GenPM with different configurations and extraordinary

2500x speedup achieved.

 Figure 4. GenPM speedup (10KB trace)

4.4 Energy and Power Analysis
We compare GenPM and RISC32 with the same workload

(10KB network traces, 64 Snort patterns), estimating

energy and power of GenPM at 1GHz operation. The

results (see Figure 5) show GenPM energy efficiency

improvements from 31x to over 980x. The reduction comes

both from a reduced runtime (less leakage energy), and via

reduction of instructions and instruction fetch energy.

 Figure 5. GenPM energy efficiency over RISC32

 Figure 6. GenPM and RISC energy

Figure 6 shows the proportion of energy for GenPM

(Banks,Steps,Vectors) configurations. GenPM’s efficiency

focuses the energy spent on the most valuable DFA work,

the data memory references, reducing the other elements to

increase energy efficiency. Figure 7 shows the power detail

of GenPM, plotted in milliwatts. Even the most aggressive

64-way, 16-step GenPM consumes only 1 watt, yet delivers

the performance of 16 Intel Ivy Bridge cores at 2.7GHz.

 Figure 7. GenPM Power (various configs)

4.5 Throughput and Area
GenPM-core die areas without memory are shown in Table

2. Most of the die area of GenPM core goes to network

interconnection and vector registers. Figure 8 shows

GenPM throughput and Figure 9 shows throughput-

rate/Watt for different GenPM configurations. A single

GenPM core can achieve >35GigaOps/sec; scaled up to a

75W chip, this is 2.6 trillion DFA ops/second to meet the

needs of exponentially growing big data.

 Figure 8. GenPM Throughput throughput-rate/Watt

Figure 9.Throughput-rate/Watt

System Process(nm) Core area(mm2)

RISC32 32 0.034

8-wide GenPM 32 0.223

64-wide GenPM 32 0.571

 Table 2. Core silicon area

5. Discussion and Related Work
The GenPM design is a part of the 10x10 project [20 21],

an ambitious effort to design general-purpose processors

with much higher energy efficiency from collections of

highly customized cores. GenPM is one of the micro-

engines that would be combined as one of the 10, above a

shared memory system.

To understand GenPM in context, we compare to

performance and energy efficiency results to several prior,

scaling for process differenes. The results are summarized

in Figure 10.

ASIC Brodie et al [9] ‘s ASIC design in 65-nm process

was projected to achieve a string line rate at 16Gbps,

500MHz clock frequency in 200mm2 die area and 12KB

RAM/engine. We estimate their design achieves throughput

per Watt of 42Gops/J (detail see Appendix B). We scale to

32 nm process, so 168Gops/J (throughput per Watt)

GPU Vasiliadis et al [7] implemented a multiple input

parallel pattern matching algorithm on Geforce GTX480.

Full GPU card capacity throughput is 6Gops/s, and the

power is 250W. Therefore, the throughput per Watt is

0.024Gops/J. Scaled to 32 nm, the GPU achieves

0.048Gops/J (throughput per Watt).

CPU Intel’s HyperScan solution [22] for DPI application

on 2.7GHz Intel Xeon E5-2600 (16 threads, 8 cores)

achieves the throughput 134Gbps/8 = 16.75Gops/s in

130W. It achieves 0.13Gops/J (throughput per Watt)

Network Processor The IBM Power Edge of Network

processor [23] in 45-nm process with 8 regular expression

accelerators can achieve throughput 72Gbps/8 = 9Gops/s in

20W. Scaled to 32nm, IBM PowerEN achieves 0.9Gops/J

(throughput per Watt).

GenPM The throughput of a 64 wide-16 step GenPM is

36Gops/s and with power of 1004mW. The throughput per

Watt is 36Gops/J. Our design generate from high level

architecture specification, so an optimized design could

easily double GenPM’s score at 72Gops/J (throughput per

Watt).

Figure 10. Energy Efficiency and Performance of Various

Approaches

Figure 10 illustrates the performance-programmability

space for FSM-based applications. While, GenPM has high

energy efficiency while preserving a high degree of

programmability.

6. Summary and Future Work
GenPM is a novel micro-architecture for a broad domain of

pattern-matching applications. Our design and detailed

evaluation show dramatic performance and energy

efficiency improvements compared with FPGA, GPU, and

CPU approaches, and are even comparable to ASIC

systems. This enables extraordinary efficiency for

generalized pattern-matching applications in a flexible

programmable system.

Promising avenues for future study include study with more

advanced processes (a 7-nm process model), evaluation

with additional workloads, further optimization based on

DFA compression, and study of larger systems - multiple

GenPM-cores.

7. Acknowledgement
This work is being supported in part by the Defense

Advanced Research Projects Agency under award HR0011-

13-2-0014, a gift from Agilent, and the generous Synopsys

Academic program. We thank Tung Hoang and other

members in LSSG for their valuable suggestions.

References
[1] Lin P C, Lin Y D, Lee T, et al. Using string matching

for deep packet inspection. IEEE Computer, 2008,

41(4): 23-28.

[2] Bruno N, Koudas N, Srivastava D. Holistic twig joins:

optimal XML pattern matching, Proceedings of the

2002 ACM SIGMOD international conference on

Management of data. ACM, 2002: 310-321.

[3] Chen L, Lu S, Ram J. Compressed pattern matching in

DNA sequences, Computational Systems

Bioinformatics Conference, IEEE, 2004: 62-68.

[4] Dargham J, Al-Nasrawi S. FSM behavioral modeling

approach for hypermedia web applications: FBM-

HWA approach, AICT-ICIW'06, IEEE Press.

[5] Barford L A. Parallelizing small finite state machines,

with application to pulsed signal

analysis[C]//Instrumentation and Measurement

Technology Conference (I2MTC), 2012 IEEE

International. IEEE, 2012: 1957-1962.

[6] Frank, Dennard, Nowak, et al. Device scaling limits of

Si MOSFETs and their application dependencies.

Proceedings of the IEEE, 2001, 89(3): 259-288

[7] Vasiliadis G, Polychronakis M, Ioannidis S. MIDeA: a

multi-parallel intrusion detection architecture,

Proceedings of the 18th ACM conference on Computer

and communications security. ACM, 2011: 297-308.

[8] Yang and Prasanna. High-performance and compact

architecture for regular expression matching on

FPGA. IEEE Trans. on Computers, 2012, 61(7): 1013-

1025.

[9] Brodie B C, Taylor D E, Cytron R K. A scalable

architecture for high-throughput regular-expression

pattern matching, ISCA 2006, CAN 34(2): 191-202.

[10] Scarpazza D P, Russell G F. High-performance

regular expression scanning on the Cell/BE processor,

23rd Intl Conf on Supercomputing. ACM, 2009: 14-25

[11] Mytkowicz T, Musuvathi M, Schulte W. Data-Parallel

Finite-State Machines[J]. ASPLOS 2014.

[12] Zhao Z, Wu B, Shen X. Challenging the

embarrassingly sequential: parallelizing finite state

machine-based computations through principled

speculation[C]//Proceedings of the 19th international

conference on Architectural support for programming

languages and operating systems. ACM, 2014: 543-

558.

[13] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and

Neil Immerman, "Efficient Pattern Matching over

Event Streams",SIGMOD’08, June 9–12, 2008,

Vancouver, BC, Canada

[14] Mulder, M. ; Grand Valley State Univ., Allendale, MI ;

Nezlek, G.S,Creating protein sequence patterns using

efficient regular expressions in bioinformatics

research, 28th International Conference on Information

Technology Interfaces,207 - 212 2006.

[15] http://regex.wustl.edu/index.php/Main_Page

[16] Thoziyoor S, Muralimanohar N, Ahn J H, et al. CACTI

5.1, HP Laboratories, April 2008.

[17] Patel A, Afram F, Ghose K. Marss-x86: A qemu-based

micro-architectural and systems simulator for x86

multicore processors[C]//1st International Qemu Users’

Forum. 2011: 29-30.

[18] Rosenfeld P, Cooper-Balis E, Jacob B. Dramsim2: A

cycle accurate memory system simulator[J]. Computer

Architecture Letters, 2011, 10(1): 16-19.

[19] SNORT: The Open Source Network Intrusion

Detection System. http://www.snort.org

[20] Borkar S, Chien A A. The future of microprocessors.

Communications of the ACM, 2011, 54(5): 67-77.

[21] Chien A A, Snavely A, Gahagan M. 10x10: A general-

purpose architectural approach to heterogeneity and

energy efficiency. Procedia Computer Science, 2011, 4:

1987-1996.

[22] http://www.intel.com/content/dam/www/public/us/en/d

ocuments/white-papers/160gbps-dpi-performance-

using-intel-architecture-paper.pdf

[23] Golander A, Greco N, Xenidis J, et al. IBM's PowerEN

developer cloud: Fertile ground for academic

research[C]//Electrical and Electronics Engineers in

Israel (IEEEI), 2010 IEEE 26th Convention of. IEEE,

2010: 000803-000807.

Appendix A
Detail about Snort rules used in the performance and energy evaluation. Note that the transition to default state is not counted

as a transition.

Rule Name States Transitions Rule Name States Transitions

1 17 51 33 29 57

2 24 6144 34 23 5888

3 27 6912 35 23 5888

4 20 5120 36 28 7168

5 8 2048 37 27 6912

6 13 3328 38 27 6912

7 20 5120 39 23 5888

8 29 57 40 24 3835

9 14 45 41 20 5120

10 21 42 42 21 5376

11 26 625 43 22 54

12 26 154 44 16 4096

13 22 5632 45 29 7424

14 24 6144 46 20 5120

15 26 6656 47 20 5120

16 32 107 48 23 45

17 20 5120 49 23 5888

18 32 8704 50 17 4352

19 8 2048 51 30 7680

20 13 3328 52 14 45

21 20 5120 53 21 42

22 21 5376 54 16 39

23 16 4096 55 10 67

24 23 5888 56 16 39

25 17 4352 57 16 39

26 14 3584 58 12 31

27 30 7680 59 19 46

28 20 5120 60 24 1575

29 32 178 61 18 785

30 23 1928 62 22 5632

31 17 51 63 24 6144

32 20 5120 64 27 6912

Appendix B
We estimate the ASIC throughput per Watt as follows: Each engine, which is 0.19mm2, process 2 pattern with one memory

access on average according to the published paper. Thus, the chip capacity throughput is . If

per RAM access energy is 0.12nJ, then under 500MHz the dynamic memory power is 30W. Estimating logic dynamic power

doubles memory power produces throughput per Watt of 42Gops/J. We scale to 32 nm process, so 168Gops/J (throughput per

Watt)

