
  

Abstract 

Many big data applications including dictionary-based 

decoding, deep packet inspection, Bioinformatics (DNA 

Alignment), and JSON/XML processing depend on fast 

pattern matching – well-known as difficult to accelerate. 

We have designed a novel heterogeneous architecture, 

called the Generalized Pattern Matching micro-engine 

(GenPM), to accelerate FSM-based applications.  GenPM 

balances programmability and performance, employing a 

novel micro-architecture and software interface.  We 

implement and evaluate GenPM in a 32nm TSMC process 

using a Snort network monitoring workload.  Results show 

64-way, 16-step GenPM can reduce instruction count by 

>1800x, effectively eliminating instruction management as 

a bottleneck.  Remarkably, this reduction produces >2400x 

performance increase and energy efficiency benefits of 

980x.  Less aggressive GenPM’s, such as 8-way,16-step 

achieve 200-fold instruction reduction, 300-fold 

performance increase, and 170-fold energy efficiency 

benefit.  GenPM approaches ASIC efficiency, while 

maintaining programmability.  

1. Introduction 
Endemic to the explosion of big data is the need to find 

patterns in a sea of unstructured, noisy, and complex data. 

Thus, pattern-matching applications are essential tools, and 

must operate at high speed and efficiency to be useful at 

“big data” scale.  Canonically, pattern-matching uses 

regular expressions (RE) to express search patterns, and 

then extracts all sets of the data that match the regular 

expressions. For example, pattern-matching applied to 

network flows might look for attack patterns or applied to 

flow contents look for virus signatures (network monitoring 

and intrusion detection).  Network flows at 100Gig 

comprise a Petabyte/day. In bioinformatics, a human 

genome is several gigabytes, but many plant genomes are 

much larger, and pattern-based search is a central 

computational tool (bioinformatics).   Content search over 

XML/JSON databases also benefits from rich pattern-

matching capabilities (data mining, high frequency trading, 

deep content search).  High performance for such data 

intensive applications has been the subject of extensive 

research [1, 2, 3, 4, 5].   

While here our focus is pattern-matching, our broader focus 

is the design of a new class of energy-efficient and 

programmable microarchitectures capable of servicing a 

wide variety of pattern matching applications. With the 

benefits of Dennard Scaling [6] fading, our approach is to 

increase both performance and energy efficiency with a 

customized architecture.  

Many pattern-matching accelerators have been proposed, 

exploiting ASIC, FPGA, GPU or multi-core approaches [7, 

8, 9, 10].  Recent publications also explore new algorithmic 

and software approaches [11,12], demonstrating the 

relevance and central importance of the problem.  While 

each of these approaches improves performance, relative to 

a traditional single-core CPU, they are all far from the 

maximum achievable performance. We will show in 

GenPM how large this gap is.  GenPM, a customized core 

that exploits local memory, SIMD operations, and complex 

instructions to accelerates pattern-matching on big data.  

Our results show that performance can approach that of 

ASIC’s while maintaining programmability. Specific 

contributions include: 

 Design of a novel micro-architecture for generalized 

pattern matching and ISA (GenPM), 

 Implementation of GenPM in 32nm CMOS enabling 

rigorous timing and energy evaluation,  

 Evaluation of GenPM performance using the RegEx 

software system with a standard SNORT workload, 

demonstrating 36x to as much as 2500x performance 

improvement(depends on GenPM configuration), 

 Evaluation of GenPM energy use showing as much as 

31x to 980x improvement (depends on GenPM config), 

 Area and energy efficiency studies that show GenPM 

can scale to 2.6 Trillion DFAops/second in a full chip-

scale design, 

 

The remainder of the paper is organized as follows. 

Section 2 introduces key background, and Section 3 

introduces the GenPM architecture and its use. Section 4 

describes the evaluation and Section 5 shows detailed 

discussion with related work. Section 6 summarizes and 

suggests directions for future work.  

Generalized Pattern Matching Micro-Engine 

                 Yuanwei Fang,  Raihan ur Rasool†,  Dilip Vasudevan,   Andrew A. Chien* 

                        Dept. of Computer Science          Dept. of Computer Science†                 MCS Division* 

                           University of Chicago                    King Faisal University†          Argonne National Laboratory* 

          {fywkevin,dilipv}@cs.uchicago.edu   rrasool@kfu.edu.sa†    achien@cs.uchicago.edu* 

                                                               

                       



2. Background 
Deterministic Finite Automata(DFA) is a natural formalism 

for regular expressions and has a wide range of application.  

Deep Content Inspection involves thorough searching of 

packets payloads against thousands of rules to identify 

intrusive or malicious behavior at wire speed. DCI systems 

employ REs or simple strings to express the patterns using 

DFAs due to their ability to do high speed matching in fast 

pace networks. 

XML is currently the most popular format for exchanging 

and representing data on the web. As DFA takes constant 

amount of time to process one (SAX) event, several recent 

works employ it to represent queries [13]. 

For bioinformatics applications, DFA is used for Gene 

finding, Motif finding, protein secondary sequence 

prediction, splice site predictions, restriction site 

finding and generally in biological data mining [14]. 

3. Generalized Pattern Matching Engine 
We describe microarchitecture and instruction set of the 

Generalized Pattern Matching Micro-Engine (GenPM). 

3.1 RegEx on GenPM 
Our prototype pattern-matching system uses the RegEx 

program as a front-end, uses its compiler to create efficient 

DFA tables which are then implementation by GenPM. 

First, RegEx Processor [15] converts the RE expression to 

DFA tables. Next, GenPM translator rewrites the DFA table 

generating a format specifically compatible with GenPM’s 

matching unit. It takes the DFA from RegEx combining the 

acceptance and state. 

3.2 Microarchitecture 
GenPM executes normal instructions such as ALU, Load, 

Store, Branch, as well as special instructions for pattern-

matching acceleration.  It includes a multi-bank local 

memory that is used to store DFA tables (but can also be 

used for many other things) as well as a traditional memory 

hierarchy.  The critical parameters for the GenPM 

architecture are vector length, local memory parallelism, 

and DFA-steps. Vector instructions are used to implement 

multiple DFAs process against one input steam.   

GenPM retrieves string data from the main memory, and its 

Block Mover loads DFA tables from main memory into the 

local memory. The Block Mover is a DMA engine that 

efficiently transfers data between main memory and local 

memory, operating autonomously without stalling the main 

pipeline. It operates at low priority, stalling if memory 

bandwidth is unavailable. To begin processing a stream 

against a set of DFA’s, a programmer initializes a vector 

register with the base addresses of a set of DFAs.  At each 

step, the matching unit generates a set of next state 

addresses. The 6-stage GenPM pipeline is shown in Figure 

1. Special registers and purpose are shown in Table 1. 

3.2.1 DFA parallelism 
GenPM exposes fine-grained DFA parallelism through a 

vector instruction interface proportional to vector length (or 

GenPM “width”).  For each state transition, GenPM takes 

the DFA base address in the GM_VEC_BASE and 

calculates the target state addresses in parallel.  This 

parallelism, combined with efficient state encoding and 

sequence (a pointer address rather than program counter), 

dramatically reduces instruction counts. 

 

Figure 1. Microarchitecture of GenPM  

 

Resource Function spec. Description 

Local Memory 1MB--Local  

Memory       

Local Memory for micro-engines. 

Store DFA tables 

GM_VEC_STATE 1024bit--Vector 

Register 

Store each DFA table’s current 

state  

GM_VEC_ACC 1024bit--Vector 

Register 

Record acceptance for 8-64 DFA 

table for 1 -16steps 

GM_VEC_BASE 1024bit--Vector 

Register 

Base addresses for a set of 8-64 

DFA tables 

GM_VEC_BUF 1024bit--String 

buffer 

Holds input string that need to be 

processed 

                              Table 1.  GenPM special registers 

3.2.2 Matching unit, Multi-step 
The matching unit implements parallel DFA state sequence 

and acceptance testing. It can advance a number of DFAs 

forward 1, 8, or 16 steps.  In addition to implementing 

multi-step DFA sequence, it checks against acceptance 

states, flagging those DFA’s that have accepted the input 

string.  These matches are reflected as a vector of values, 

which is then parsed by software to give precise 

information (which DFA, exactly which point in the string) 

under software control.  

3.2.3 Local memory  
GenPM system performance also depends intimately on the 

local memory latency and parallelism.  We studied single 

bank and multi-bank memories, for instance, an 8-wide 

GenPM can process 8 DFA tables simultaneously; given 

sufficient memory parallelism is available. If the local 

memory has 8 banks -- each with a read and a write port -- 



and there is no bank contention, minimum latency is 

achieved.  

GenPM leaves DFA table allocation to software, and 

presumes non-conflicting layout can be achieved.  If 

conflicts occur, performance is degraded, but hardware 

ensures correctness.  Local memory addresses is embedded 

in the processors regular address space for convenient 

access. Each DFA is laid out contiguously in the address 

space with 256 entries (for every possible input) per state. 

We combine each state transition and accept rule with 16 

bits. Thus, every DFA table is N*512 bytes, N is the 

number of states in the DFA. We plan to study efficient 

compressed representations in future work.   

3.2.4 Direct Network for Local Memory 
Multi-bank memories can be built to match processor clock 

rates for small numbers of banks, but as the number of 

banks increases, network latency is a challenge.  To avert 

any impact on typical case performance, we implemented a 

2-level direct network of 8x8 switches for the 64-wide 

GenPM as shown in Figure 1. Typical case for pattern 

matching achieves local, non-conflicting access.  

3.3 GenPM Instruction Set Architecture 
GenPM extends a simple 16/32-bit RISC instruction set, 

adding ten special 32-bit instructions to accelerate pattern-

matching applications.  We outline the key instructions.    

GMVSNEXT which provides parallel processing among 

DFA tables and multi-step pattern matching. It receives 3 

input parameters: buffer pointer, buffer index, and number 

of steps to process. Buffer pointer points to the latest 

position in string buffer vector register, buffer index 

chooses which buffer vector to read from after employing 

“double buffering” scheme.  

GMVSACC tests whether there are acceptances among 

DFA tables, if accept then it returns the number of 

acceptances, and the program goes into the hit handler. 

GMVSCONT takes out the value which records the 

matching length for current matching string. 

GMLD,GMST loads/stores data block from/to the main 

memory to/from the local memory.  

GMBUFLD,GMBSLD loads input string and the base 

address of each DFA table into corresponding vector 

register. 

GMSTRIDEBACK retrieves DFA states before current 

multi-step transitions when GenPM hits an accept rule in 

multiple step process. This enables recomputing the fine-

grained state transitions during the last multi-step procss 

and tell the exact matcing location. 

GMCHECK check the GenPM’s status register of multi-

cycle executions for futher process. 

GMVSCLEAR reset all the GenPM registers to zero. 

4. Evaluation 
We evaluate the performance and energy efficiency of 

GenPM, comparing to a 32-bit, 6-stage in-order single issue 

RISC processor (RISC32). We implemented GenPM micro-

engine based on RISC32 using Synopsys CAD flow using a 

32-nm TSMC library. Local memory energy models are 

based on CACTI 6 [16]. We integrate MARSSx86[17] and 

DRAMsim2[18] into our memory system model. 

RegEx software is used with test patterns from SNORT [19] 

and real network traces. We divide Snort set into those 

requiring regular expressions and use RegEx to generate 

DFA tables. DFA’s small enough to fits into a local 

memory bank are chosen. Detail about test rules see 

Appendix A. 

4.1 Hardware Configuration 
GenPM and baseline RISC processor has a 32KB 8-way L1 

instruction cache and a 24KB 6-way L1 data cache, an 8-

way 512 KB L2 cache and a 4GB DDR3 DRAM system. 

The total local memory capacity for GenPM is 1MB.  

GenPM designs vary the vector length (GenPM width), the 

number of local memory banks and multi-step length. 

4.2 Metrics 
We define energy efficiency as the total energy consumed 

for a given workload and operations/joule.   

 Workload/energy = Throughput/Watt 

=Num_DFA×processed_characters/Joule 

We define system throughput as DFA steps per second that 

is, the full chip capacity computing ability to process the 

number of input characters per second for all parallel DFA 

matching.  

Throughput = Num_DFA×Processed_characters/execution_time 

4.3 Performance  

 

               Figure 2. GenPM work per instruction for 10KB trace 

We measured the kernel instruction count of Simple 

DFA_RE in GenPM and RISC32 with a 10KB input 

network trace and 64 Snort patterns. Figure 2 shows the 

work per instruction for GenPM with (8 or 64) local 

memory banks and same vector length with (1, 8, or 16-

step) operations.  



The result suggests that GenPM can significantly reduce 

instruction count. Even GenPM’s instruction count for 8-

way GenPM with 1-step execution is 26x times lower than 

RISC baseline. If no local memory contention arises, 

GenPM achieves 8 instructions overhead per vector/multi-

step operation.  Because per Amdahl’s law this overhead 

limits performance, increasing steps/instruction can further 

increase single stream performance towards the hard limit 

of 1 character per cycle. In the most aggressive 64-way, 16-

step GenPM configuration (with 64-bank local memory), 

achieves 1800X fewer instructions than the baseline 

RISC32.  

 

        Figure 3.Performance impact of memory parallelism on GenPM 

with 8-step and 8 vector length 

Exploiting enough parallelism (multi-local memory banks), 

further improves the performance (see Figure 3), with 

benefits as large as an additional 5x. Figure 3 shows the 

relative performance of GenPM with 1, 4, or 8 local 

memory banks on an 8-way (vector length), 8-step GenPM. 

By employing multi-step operation, GenPM reduces while-

loop condition check cost as well as gmvsnext instruction 

count. Figure 2 also shows the instruction benefit of multi-

step operation length over different levels of GenPM DFA 

parallelism.  

The total execution time includes the scalar instructions and 

the multi-step (multi-cycle). Figure 4 shows the speedup of 

GenPM with different configurations and extraordinary 

2500x speedup achieved.  

 

          Figure 4. GenPM speedup (10KB trace)  

4.4 Energy and Power Analysis 
We compare GenPM and RISC32 with the same workload 

(10KB network traces, 64 Snort patterns), estimating 

energy and power of GenPM at 1GHz operation.  The 

results (see Figure 5) show GenPM energy efficiency 

improvements from 31x to over 980x. The reduction comes 

both from a reduced runtime (less leakage energy), and via 

reduction of instructions and instruction fetch energy. 

 

               Figure 5. GenPM energy efficiency over RISC32 

 

       Figure 6. GenPM and RISC energy  

Figure 6 shows the proportion of energy for GenPM 

(Banks,Steps,Vectors) configurations. GenPM’s efficiency 

focuses the energy spent on the most valuable DFA work, 

the data memory references, reducing the other elements to 

increase energy efficiency. Figure 7 shows the power detail 

of GenPM, plotted in milliwatts.  Even the most aggressive 

64-way, 16-step GenPM consumes only 1 watt, yet delivers 

the performance of 16 Intel Ivy Bridge cores at 2.7GHz.   

 

                  Figure 7. GenPM Power (various configs)       



4.5 Throughput and Area 
GenPM-core die areas without memory are shown in Table 

2. Most of the die area of GenPM core goes to network 

interconnection and vector registers.   Figure 8 shows 

GenPM throughput and Figure 9 shows throughput-

rate/Watt for different GenPM configurations.  A single 

GenPM core can achieve >35GigaOps/sec; scaled up to a 

75W chip, this is 2.6 trillion DFA ops/second to meet the 

needs of exponentially growing big data. 

 

        Figure 8. GenPM Throughput throughput-rate/Watt 

 

Figure 9.Throughput-rate/Watt 

System Process(nm) Core area(mm2) 

RISC32 32 0.034 

8-wide GenPM 32 0.223 

64-wide GenPM 32 0.571 

                          Table 2. Core silicon area 

 

5. Discussion and Related Work 
The GenPM design is a part of the 10x10 project [20 21], 

an ambitious effort to design general-purpose processors 

with much higher energy efficiency from collections of 

highly customized cores.  GenPM is one of the micro-

engines that would be combined as one of the 10, above a 

shared memory system.    

To understand GenPM in context, we compare to 

performance and energy efficiency results to several prior, 

scaling for process differenes.  The results are summarized 

in Figure 10. 

ASIC  Brodie et al [9] ‘s ASIC design in 65-nm process 

was projected to achieve a string line rate at 16Gbps, 

500MHz clock frequency in 200mm2 die area and 12KB 

RAM/engine. We estimate their design achieves throughput 

per Watt of 42Gops/J (detail see Appendix B). We scale to 

32 nm process, so 168Gops/J (throughput per Watt) 

GPU Vasiliadis et al [7] implemented a multiple input 

parallel pattern matching algorithm on Geforce GTX480. 

Full GPU card capacity throughput is 6Gops/s, and the 

power is 250W. Therefore, the throughput per Watt is 

0.024Gops/J. Scaled to 32 nm, the GPU achieves 

0.048Gops/J (throughput per Watt). 

CPU  Intel’s HyperScan solution [22] for DPI application 

on 2.7GHz Intel Xeon E5-2600 (16 threads, 8 cores) 

achieves the throughput 134Gbps/8 = 16.75Gops/s in 

130W. It achieves 0.13Gops/J (throughput per Watt) 

Network Processor  The IBM Power Edge of Network 

processor [23] in 45-nm process with 8 regular expression 

accelerators can achieve throughput 72Gbps/8 = 9Gops/s in 

20W. Scaled to 32nm, IBM PowerEN achieves 0.9Gops/J 

(throughput per Watt). 

GenPM The throughput of a 64 wide-16 step GenPM is 

36Gops/s and with power of 1004mW. The throughput per 

Watt is 36Gops/J. Our design generate from high level 

architecture specification, so an optimized design could 

easily double GenPM’s score at 72Gops/J (throughput per 

Watt).  

     

Figure 10. Energy Efficiency and Performance of Various 

Approaches  

Figure 10 illustrates the performance-programmability 

space for FSM-based applications. While, GenPM has high 

energy efficiency while preserving a high degree of 

programmability. 

 

6. Summary and Future Work 
GenPM is a novel micro-architecture for a broad domain of 

pattern-matching applications.  Our design and detailed 

evaluation show dramatic performance and energy 

efficiency improvements compared with FPGA, GPU, and 

CPU approaches, and are even comparable to ASIC 

systems. This enables extraordinary efficiency for 



generalized pattern-matching applications in a flexible 

programmable system. 

Promising avenues for future study include study with more 

advanced processes (a 7-nm process model), evaluation 

with additional workloads, further optimization based on 

DFA compression, and study of larger systems - multiple 

GenPM-cores. 
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Appendix A 
Detail about Snort rules used in the performance and energy evaluation. Note that the transition to default state is not counted 

as a transition. 

 

Rule Name States Transitions Rule Name States Transitions 

1 17 51 33 29 57 

2 24 6144 34 23 5888 

3 27 6912 35 23 5888 

4 20 5120 36 28 7168 

5 8 2048 37 27 6912 

6 13 3328 38 27 6912 

7 20 5120 39 23 5888 

8 29 57 40 24 3835 

9 14 45 41 20 5120 

10 21 42 42 21 5376 

11 26 625 43 22 54 

12 26 154 44 16 4096 

13 22 5632 45 29 7424 

14 24 6144 46 20 5120 

15 26 6656 47 20 5120 

16 32 107 48 23 45 

17 20 5120 49 23 5888 

18 32 8704 50 17 4352 

19 8 2048 51 30 7680 

20 13 3328 52 14 45 

21 20 5120 53 21 42 

22 21 5376 54 16 39 

23 16 4096 55 10 67 

24 23 5888 56 16 39 

25 17 4352 57 16 39 

26 14 3584 58 12 31 

27 30 7680 59 19 46 

28 20 5120 60 24 1575 

29 32 178 61 18 785 

30 23 1928 62 22 5632 

31 17 51 63 24 6144 

32 20 5120 64 27 6912 

 

Appendix B 
We estimate the ASIC throughput per Watt as follows: Each engine, which is 0.19mm2, process 2 pattern with one memory 

access on average according to the published paper. Thus, the chip capacity throughput is . If 

per RAM access energy is 0.12nJ, then under 500MHz the dynamic memory power is 30W. Estimating logic dynamic power 

doubles memory power produces throughput per Watt of 42Gops/J. We scale to 32 nm process, so 168Gops/J (throughput per 

Watt) 

 


