
GPUdrive: Reconsidering Storage
Accesses for GPU Acceleration

Mustafa Shihab, Karl Taht, and Myoungsoo Jung
Computer Architecture and Memory Systems Laboratory

Department of Electrical Engineering

The University of Texas at Dallas

Takeaways
• Challenge: File-driven data movement between the CPU and the GPU can

degrade performance and energy-efficiency of GPU-accelerated data processing.

• Underlying Issues:
– Performance disparity in terms of device-level latencies: A storage I/O access

is orders of magnitudes slower than a memory access

– Imposed overheads from memory-management, data-copy, and user/kernel-
mode switching

• Goals:
– Resolve performance disparity by constructing a high-bandwidth storage

system

– Optimize storage and GPU system software stacks to reduce data-transfer
overheads

• Our Approach: GPUdrive - a low cost and low power all-flash array designed

specifically for stream-based, I/O-rich workloads inherent in GPUs

• Results: Our prototype GPUdrive can eliminate 60% - 90% performance disparity,

while consuming 49% less dynamic power than the baseline, on average.

Overview

• Motivations

• GPUdrive

• Evaluations

• Related Prior Works

• Conclusion

GPU, Big Data and Storage Access

GPU-accelerated
computing in big data

analytics

But Big Data is too big
for Memory!

So GPU has to
regularly
access storage
devices

16x to 72x speed up over
CPU only approach

Storage Access in GPU Computing

GPU-kernel
accessing data
from Storage

Data Transfer Situation

Numerous ill-tuned hops
through the layers makes
storage data transfers
cumbersome and slow.

Data-transfer-rates degrade by 2000% - 8000% when
the GPU applications access the storage devices.

System Software Stacks

Significant unnecessary
overheads from data copies,
memory management, and
user/kernel-mode switching

Mutually detached
Storage and GPU -
managed by different
software stacks

Imposed Overheads

Execution times for unnecessary data copies exceeds
latency related to actual data movement by 16% - 537%

Overview

• Motivations

• GPUdrive

• Evaluations

• Related Prior Works

• Conclusion

GPUdrive

SSDs connected
to the I/O

controller with
individual SATA

3.0 physical
channel

SSDs bi-directionally
communicate with

memory controller hub
over Direct Media

Interface (DMI)

Overview

• Motivations

• GPUdrive

• Evaluations

• Related Prior Works

• Conclusion

Experimental Setup
Host Evaluation Platform Intel Core i7 with 16GB DDR3 Memory

GPU NVIDIA GTX 480 (480 CUDA cores) with
1.2GB DDR3/GDDR5 memory

Host – GPU interface PCI Express 2.0 x16

Baseline System Enterprise-scale 7500 RPM HDDs

GPUdrive Prototype SATA-based SSDs

Benchmark Applications NVIDIA CUDA SDK and Intel IOmeter
(with modified codes)

Benchmarks bench-rdrd: random read
bench-sqrd: sequential read
bench-rdwr: random write
bench-sqwr: sequential write

This is the preliminary evaluation

Upload Performance Analysis

 Performance disparity reduction

GPUdrive prototype reduces the performance disparity
between the CPU and the GPU on bench-rdrd and

bench-sqrd by 90% and 92%, respectively.

Upload Performance Analysis

 Dynamic Power Analysis

GPUdrive prototype requires 77% - 52% less dynamic

power than the baseline storage array

Download Performance Analysis
 Performance disparity reduction

bench-rdwr: reduction rates on downloads are limited
bench-sqwr: GPUdrive successfully removes the performance

disparity in the case of large I/O requests (32MB)

 bench-rdwr: baseline consumes 18 watts, whereas GPUdrive

consumes 13 watts, irrespective of the request sizes.

 bench-sqwr: GPUdrive prototype require on average 30% less dynamic

power than the baseline

Download Performance Analysis
 Dynamic Power Analysis

Overview

• Motivations

• GPUdrive

• Evaluations

• Related Prior Works

• Conclusion

Related Prior Works

Shinpei Kato et al. presented a zero-copy I/O processing scheme
in [7] to reduce computation cost and latency by mapping the I/O
address space to the virtual address space and allowing data
transfer to and from the compute device directly.

Daniel Lustig et al. proposed a CPU-GPU synchronization
technique in [8] that shortens the offload latency by employing
fine-granularity data transfer, early kernel launch, and a
proactive data return mechanism.

 Also, in the industry, techniques such as NVIDIA’s GPUDirect,
pinned memory, and unified virtual addressing (UVA) are used to
manage memory-level data transfers between the CPU and the
GPU.

Overview

• Motivations

• GPUdrive

• Evaluations

• Related Prior Works

• Conclusion

Conclusion

Data movement between the CPU and the GPU can degrade
performance and energy-efficiency of GPU-accelerated data
processing.

We propose GPUdrive - a low-cost and low-power all-flash array,

designed specifically for the workloads inherent in GPUs, with
optimized storage and GPU system software stacks.

Our prototype GPUdrive can eliminate 60% - 90% performance

disparity, while consuming 49% less dynamic power than the baseline,
on average.

We are working on to extend the findings of these preliminary

evaluations.

Questions?

Thank you

Reference
[1] Ranieri Baraglia et al. Sorting using bitonic network with cuda, 2009.
[2] Wenbin Fang et al. Mars: Accelerating mapreduce with graphics processors. TPDS, 2011.
[3] C. Gregg and K. Hazelwood. Where is the data? why you cannot debate cpu vs. gpu
performance without the answer. In ISPASS, 2011.
[4] Intel. Iometer User’s Guide. 2003.
[5] Myoungsoo Jung and Mahmut Kandemir. Revisiting widely held ssd expectations and
rethinking system-level implications. In SIGMETRICS, 2013.
[6] S. Kato et al. Rgem: A responsive gpgpu execution model for runtime engines. In RTSS, 2011.
[7] Shinpei Kato et al. Zero-copy i/o processing for low-latency gpu computing. In ICCPS, 2013.
[8] Daniel Lustig et al. Reducing gpu offload latency via fine-grained cpu-gpu synchronization. In
HPCA, 2013.
[9] Mellanox. Nvidia gpudirect technology accelerating gpu-based systems.
http://www.mellanox.com/pdf/whitepapers/TB_GPU_Direct.pdf.
[10] NVDIA. Nvidia cuda library documentation. http://docs.nvidia.com/cuda/.
[11] NVIDIA. Gpu-accelerated applications.
http://www.nvidia.com/content/tesla/pdf/gpuaccelerated-applications-for-hpc.pdf.
[12] Nadathur Satish et al. Designing efficient sorting algorithms for manycore gpus, 2009.
[13] Tim C. Schroeder. Peer-to-peer and unified virtual addressing. 2013.
[14] Jeff A. Stuart and John D. Owens. Multi-gpu mapreduce on gpu clusters. In IPDPS, 2011.
[15] RenWu et al. Gpu-accelerated large scale analytics, 2009.

