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Takeaways 
• Challenge: File-driven data movement between the CPU and the GPU can 

degrade performance and energy-efficiency of GPU-accelerated data processing. 

• Underlying Issues: 
– Performance disparity in terms of device-level latencies:  A storage I/O access 

is orders of magnitudes slower than a memory access 

– Imposed overheads from memory-management, data-copy, and user/kernel-
mode switching  

• Goals: 
– Resolve performance disparity by constructing a high-bandwidth storage 

system  

– Optimize storage and GPU system software stacks to reduce data-transfer 
overheads  

• Our Approach: GPUdrive - a low cost and low power all-flash array designed 

specifically for stream-based, I/O-rich workloads inherent in GPUs 

• Results: Our prototype GPUdrive can eliminate 60% - 90% performance disparity, 

while consuming 49% less dynamic power than the baseline, on average. 
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GPU, Big Data and Storage Access 

GPU-accelerated 
computing in big data 

analytics 

But Big Data is too big 
for Memory! 

So GPU has to 
regularly 
access storage 
devices 

16x to 72x speed up over 
CPU only approach 



Storage Access in GPU Computing  

GPU-kernel 
accessing data 
from Storage 



Data Transfer Situation 

Numerous ill-tuned hops 
through the layers makes 
storage data transfers 
cumbersome and slow. 

Data-transfer-rates degrade by 2000% - 8000% when 
the GPU applications access the storage devices. 



System Software Stacks 

Significant unnecessary 
overheads  from data copies, 
memory management, and 
user/kernel-mode switching 

Mutually detached 
Storage and GPU - 
managed by different 
software stacks 



Imposed Overheads 

Execution times for unnecessary data copies exceeds 
latency related to actual data movement by 16% - 537%  



Overview 

• Motivations 

• GPUdrive 

• Evaluations 

• Related Prior Works 

• Conclusion 



GPUdrive 

SSDs connected 
to the I/O 

controller  with 
individual SATA 

3.0 physical 
channel 

SSDs bi-directionally 
communicate with 

memory controller hub 
over Direct Media 

Interface (DMI) 
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Experimental Setup 
Host Evaluation Platform Intel Core i7 with 16GB DDR3 Memory 

GPU NVIDIA GTX 480 (480 CUDA cores) with 
1.2GB DDR3/GDDR5 memory 

Host – GPU interface PCI Express 2.0 x16 

Baseline System  Enterprise-scale 7500 RPM HDDs  

GPUdrive Prototype SATA-based SSDs 

Benchmark Applications NVIDIA CUDA SDK and Intel IOmeter 
(with modified codes) 

Benchmarks bench-rdrd: random read 
bench-sqrd: sequential read 
bench-rdwr: random write 
bench-sqwr: sequential write 

This is the preliminary evaluation 



Upload Performance Analysis 

 Performance disparity reduction 

GPUdrive prototype reduces the performance disparity 
between the CPU and the GPU on bench-rdrd and 

bench-sqrd by 90% and 92%, respectively. 



Upload Performance Analysis 

 Dynamic Power Analysis 

GPUdrive prototype requires 77% - 52% less dynamic 

power than the baseline storage array 



Download Performance Analysis 
 Performance disparity reduction 

bench-rdwr:  reduction rates on downloads are limited  
bench-sqwr: GPUdrive successfully removes the performance 

disparity in the case of large I/O requests (32MB) 



 bench-rdwr: baseline consumes 18 watts, whereas GPUdrive 

consumes 13 watts, irrespective of the request sizes.  

 bench-sqwr: GPUdrive prototype require on average 30% less dynamic 

power than the baseline 

Download Performance Analysis 
 Dynamic Power Analysis 
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Related Prior Works 

Shinpei Kato et al. presented a zero-copy I/O processing scheme 
in [7] to reduce computation cost and latency by mapping the I/O 
address space to the virtual address space and allowing data 
transfer to and from the compute device directly. 
 

Daniel Lustig et al. proposed a CPU-GPU synchronization 
technique in [8]  that shortens the offload latency by employing  
fine-granularity data transfer, early kernel launch, and a 
proactive data return mechanism. 
 

 Also, in the industry, techniques such as NVIDIA’s GPUDirect,  
pinned memory, and unified virtual addressing (UVA) are used to 
manage memory-level data transfers between the CPU and the 
GPU. 
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Conclusion 

Data movement between the CPU and the GPU can degrade 
performance and energy-efficiency of GPU-accelerated data 
processing. 

 
We propose GPUdrive - a low-cost and low-power all-flash array, 

designed specifically for the workloads inherent in GPUs, with 
optimized storage and GPU system software stacks. 

 
Our prototype GPUdrive can eliminate 60% - 90% performance 

disparity, while consuming 49% less dynamic power than the baseline, 
on average. 

 
We are working on to extend the findings of these preliminary 

evaluations. 



Questions? 

Thank you 
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