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Abstract

GPU-accelerated data-intensive applications demon-
strate in excess of ten-fold speedups over CPU-only ap-
proaches. However, file-driven data movement between
the CPU and the GPU can degrade performance and en-
ergy efficiencies by an order of magnitude as a result of
traditional storage latency and ineffectual memory man-
agement. In this paper, we first analyze these two crit-
ical performance bottlenecks in GPU-accelerated data
processing. We then study design considerations to re-
duce the overheads imposed by file-driven data move-
ments in GPU computing. To address these issues, we
prototype a low cost and low power all-flash array de-
signed specifically for stream-based, I/O-rich workloads
inherent in GPUs. As preliminary evaluation results, we
demonstrate that our early-stage all-flash array solution
can eliminate 60% ~ 90% performance discrepancy be-
tween memory-level GPU data transfer rates and storage
access bandwidth by removing unnecessary data copies,
memory management, and user/kernel-mode switching
in the current system software stack. In addition, our all-
flash array prototype consumes less dynamic power than
the baseline storage array by 49%, on average.

1 Introduction

The general purpose graphics processing unit (GPGPU
or GPU — we use GPU hereafter) has risen to promi-
nence as an accelerator with comparatively low power
consumption. In a GPU, there exist hundreds of pro-
cessing cores per chip, and many of those cores share
execution controls rather than maintaining their own
instruction registers. This single-instruction multiple-
data (SIMD) architecture is capable of accelerating data-
intensive applications that seek to perform identical op-
erations on numerous pieces of data via thread-level and
data-level parallelism. Furthermore, data-intensive ap-
plications can also offload computational kernels from
the CPU to the GPU, therefore introducing massive

device-level parallelism. As a consequence of this effi-
cacy in managing application execution over many levels
of parallelism, GPU-accelerated data-intensive applica-
tions demonstrate 2x ~ 55x speedups [15, 11, 12, 1] and
big data analytics such as MapReduce improve by 16x ~
72x compared to a CPU-only approach [2, 14].

While a powerful computation acceleration technol-
ogy, these GPU-based accelerations are unfortunately
limited in many cases by significant communication
overheads associated with uploading and downloading
data sets, kernel launching, and synchronization pro-
cesses. Specifically, latency related to data transfer be-
tween the CPU and the GPU exceeds actual GPU’s data
processing time [3] by 200% ~ 5000%. As a result,
both industry and academia are turning their focus on
reducing data transfer costs between CPU-memory and
GPU-memory. As an example, NVIDIA’s direct access
(called GPUDirect) [9] and zero-copying data movement
mechanisms [7] allow the GPU to directly access a PCle
device if they co-exist under a same root complex that
connects the CPU and the memory controller hub to
PCle. Similarly, a new CPU-GPU synchronization tech-
nique [8] shortens the offload latency by employing a
fine-granularity data transfer, early kernel launch, and a
proactive data return mechanism. In addition, CUDA’s
pinned memory (also known as non-pageable memory)
[10] and unified virtual addressing (UVA) [13] reduces
CPU intervention to [OMMU in managing memory-level
data transfers.

While these optimizations work to alleviate memory
copy operations between the CPU and the GPU, there
is a dearth of similar optimizations to enable efficient
storage-level operations. Part of this is merely a raw
difference in device-level latencies such as a storage I/0
access, which is in practice orders of magnitudes slower
than a memory access, making it one of the greatest chal-
lenges GPU-accelerated data-intensive applications need
to address.

Further, the input data that GPU-kernels will process



should be available in pageable/non-pageable host-side
memory before the non-preemptive direct memory ac-
cess (DMA) begins to transfer them to GPU [6]. We
observe that, in cases where the GPU applications need
to fetch the target data sets from the underlying storage
drive, the data transfer rates between the CPU and the
GPU degrade by about 95%, which might not be accept-
able in many GPU computing applications. We also ob-
serve that the corresponding storage accesses introduce
additional power consumption (12 ~ 19 watts) in GPU
computing per computing node.

To address these challenges, we prototype GPUdrive,
an inexpensive, low power, high-performance storage
system, specifically designed to address the data-transfer
performance disparity between the storage and the GPU.
As a first pass and baseline example of GPUdrive, we
construct an all-flash array by employing multiple low-
end SSDs, which exposes the aggregate SSD perfor-
mance through a conventional thin interface. To accel-
erate GPUdrive performance, we optimize existing sys-
tem software stacks for both the storage and the GPU de-
vices, which helps to eliminate unnecessary data copies,
memory management, and user/kernel-mode switching
overheads.

Our preliminary evaluation results show that, the
early-stage of our GPUdrive completely eliminates the
performance disparity for request sizes greater than 16
MB, and its data-transfer rates accounts for 60% ~ 90%
of the GPU data-transfer rates with much less power con-
sumption when GPU applications access the underlying
storage mediums.

2 Overview

In this section, we briefly detail typical GPU architec-
ture, data paths, and the software stack on the host which
facilitates all the data movements.

2.1 Architecture

GPU and CPU. Figure 1 illustrates a high-level view
of the conventional computer organization (left) and a
connected GPU architecture (right). A GPU consists of
multiple execution units (EU), each of which has small
data-parallel compute cores. These EUs are connected
to multiple memory modules, hereafter referred to as
GPU-memory, through the on-device caches and inte-
grated memory controllers (MC). In parallel, the host-
side CPU can have multiple memory modules, called
CPU-memory, which are connected to its own on-chip
memory controller hub (MCH). The communications
and data movements between the GPU and the CPU
are co-managed by the host-side memory controller in
MCH and the GPU-side on-device microprocessor. Due
to the highly parallel and throughput-oriented nature of
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Figure 1: A high-level view of a conventional computer
and a GPGPU architecture.

the GPU, such a heterogeneous GPU-CPU architecture
offers excellent performance, often an order of magni-
tude better than CPU-only computing for large-scale and
data-intensive workloads [8]. However, the overheads
associated with communication and data movement pre-
vent the GPU from being able to take full advantage of its
inherent massive parallelism in such workloads. Put suc-
cinctly, moving data between the storage and the GPU is
the bottleneck for data-intensive applications that might
otherwise benefit from the properties of the GPU.

The Data Paths on GPU and Storage. Since traditional
spinning disks are a thousand times slower than memory
devices, they are connected to the off-chip I/O controller
hub, IOH (distant from the CPU), through thin storage
interfaces. When a GPU-kernel requires data from the
underlying storage drive, it therefore must traverse vari-
ous interface boundaries including: GPU-memory, CPU-
memory, thin interfaces, and the storage device itself.
These numerous hops through layers ill-tuned to handle
the raw bandwidth and low latency GPUs expect makes
storage data transfers cuambersome and slow.

2.2 System Software

I/O communication methods and data paths between
GPU and storage are completely desperate because of
their different functionalities and responsibilities (com-
putation oriented and data-management oriented). As
a consequence, in conventional operating systems (OS),
there exist two discrete and different I/O and GPU run-
time libraries, which co-exist on the same host machine
and are both utilized in GPU applications. Figure 2 il-
lustrates these software stacks for both traditional stor-
age and the GPU. All storage accesses and file services
are managed by modules on the storage software stack,
while all GPU-related activities including memory allo-
cations and data transfers are handled by modules on the
GPU software stack.

Storage Software Stack. Walking through how these
stacks interact for storage commands, when a GPU ap-
plication calls an I/O runtime library through a POSIX
interface, the runtime library stores all the user-level
contexts and jumps to the underlying virtual file system
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Figure 2: System software stack for storage and GPU
device.

(VES), which is a kernel module in charge of manag-
ing all standard UNIX file system calls. VFS can select
an appropriate native file system such as EXT4 and ini-
tiate file I/O requests. This is done by calling an I/O
system function pointer extracted from a file-operation
function container, a kernel-level OS data structure. The
native file system then checks the actual physical location
associated with the file requests and composes block-
level I/O service transactions by calling another func-
tion pointer that can be retrieved from a block-device-
operation data structure. Finally, the host block adopter
(HBA) driver issues I/O requests to the underlying stor-
age drives. Once I/O services are completed, the data is
returned to the GPU application via the aforementioned
modules but in reverse order.

GPU Software Stack. The GPU runtime library, on the
other hand, is mainly responsible for executing GPU-
kernels and copying data between CPU-memory and
GPU-memory. Unlike the storage software stack, this
GPU runtime library creates GPU device commands at
the user-level and directly submits them with the target
data to the kernel-side GPU driver via an ioctl, which
is another system call enabling device-specific I/O op-
eration. Depending on the GPU commands, the kernel-
side GPU device driver can map a kernel-memory space
(CPU-memory) to GPU-memory space and/or translate
addresses such as CPU-memory’s virtual addresses to
physical addresses of the GPU-memory space. These
GPU-specific data transfer activities include base ad-
dress register (BAR) and graphics address remapping
table (GART) management. Once the address transla-
tions/mappings are completed, the on-device micropro-
cessor of the GPU facilitates data movement between
CPU-memory and GPU-memory.

It should be noted that, in current GPU comput-
ing, redundant and unnecessary memory copy activi-
ties exist due to multiple hops on file-driven data move-
ments. These overheads, imposed by these system soft-
ware stacks, cannot be addressed by employing low-
level communication technique or optimization such as
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Figure 3: Performance disparity observed between real
enterprise storage and GPU devices. Note that data-
transfer-rates degrade by 2000% ~ 8000% when the
GPU applications access the storage devices.

GPUDirect and zero-copy since these two discrete and
different system stack are in ignorance of each other.

3 Storage Accesses in GPU Computing
3.1 Data Transfer with Large Problem Set

Initial Observation. Figure 3 shows the significance
of the storage access and file I/O overheads by com-
paring real data transfer rates on two different GPU de-
vices (with varying PCle lane configurations) and fifteen
enterprise-scale high-end storage drives. The top and
bottom x-axes of the figure indicate data transfer rates
for GPUs employing x4 ~ x16 PCle lanes and high-end
enterprise storage drives working on 7K ~ 15K RPM,
respectively. For this test, each GPU kernel loads 8MB
input matrix. While the memory-transfer test launches
only single GPU kernel (for both pinned and unpinned
memory), file-driven data movement transfer test exe-
cutes such GPU kernel by ten times and measure average
data transfer rates.

One can observe from this figure that, the data trans-
fer rates between the CPU and the GPU degrade be-
tween 94% and 98% due to poor performance of the stor-
age accesses and file operations in cases where the GPU
applications need to fetch the target data sets from the
underlying storage drive. Specifically, data movement
performance degrade from 1.5GB/sec ~ 7.5GB/sec to
80MB/sec ~ 140 MB/sec. This undesirable performance
degradation is mainly caused by the performance dispar-
ity between memory-level transfers and data movements,
which should be addressed for GPU to process data with
large problem sets.

High-Bandwidth Flash Array Construction. We built
the GPUdrive prototype by employing multiple com-
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modity SSDs via the low-power SATA 6Gbps interface
rather than high-end PCle based SSDs. This baseline ap-
proach in turn enables us to reach a lower cost-per-GB (in
the ballpark of what an HDD-based storage array offers)
and also consume 49% less power than a conventional
enterprise-scale storage array. Looking into how our
prototype is architecturally achieved, Figure 4 illustrates
GPUdrive prototype organization in distributed GPU
system; multiple commodity SSDs are all connected to
the I/O controller hub and each of them occupies an in-
dividual SATA 3.0 physical channel. Each SSD bidirec-
tionally communicates with the memory controller hub
(e.g., the Integrated Memory Controller, or IMC) over
the Direct Media Interface (DMI), which has similar in-
terface characteristics to PCle such as multiple lanes,
point-to-point links, and full-duplex transmission. GPU-
drive exposes the aggregate performance of all these SSD
components in its flash array through DMI 2.0, whose
data-transfer rate is 20Gbit/s for each direction. This ar-
ray construction has three advantages over the alterna-
tive, a PCle-based SSD; i) total cost-per-GB and power
requirements exhibited by the flash array are much lower,
ii) array performance is better than high-end PCle SSDs,
and iii) DMI does not share any PCle physical ports
and bandwidth that distributed GPU devices use. Even
though we cannot offer detailed comparison of our pro-
totype and the PCle-based SSD approach in this paper
(due to the space limit), we observe that our early-stage
GPUdrive, on the average, consumes 63% lower static
power and has 21 times better cost-per-GB benefits while
it provides slightly better performance than the PCle-
based SSD approach.

3.2 Disconnected System Stack

Initial Observation. Challenges in current system
stacks fundamentally stem from the reality that, the stor-
age and the GPU devices are completely disconnected
from each other, and are therefore maintained and man-
aged by different software stacks. Consequently, many
redundant memory allocations/releases occur in both
user-space and kernel-space on the storage and GPU sys-
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Figure 5: Empirical evaluations for performance over-
heads of the current system stacks .

tem stacks, as shown in Figure 5. To quantify the im-
pact of this inefficiency, we compare the latency of actual
data movements while extracting out execution times un-
related to GPU uploads/downloads. One can see that,
the execution times spent performing unnecessary data
copies exceeds the latency related to actual data move-
ment by 16% ~ 537%. It should be noted that, since ker-
nel modules are prohibited from directly accessing user
memory spacel, the memory management and data copy
overheads between kernel-space and user-space imposed
by every I/O access are unavoidable when uploading the
file-associated data to GPU. Further, the kernel-mode
and user-mode switching overheads associated with the
data copies further exacerbates these latencies for file-
associated data movements.

System Stack Optimization. This inefficiency can be
addressed if we can remove some the I/O runtime library
calls from the user-level GPU applications. Though the
host-side data-intensive applications work upon two dif-
ferent runtime libraries, the target data fetched by the
storage stack is only needed by GPU-kernels, not by the
host-side data-intensive applications themselves. Con-
sequently, memory allocations/releases and data copies
between user-space and kernel-space on the same CPU-
memory are not necessarily required if there is a mech-
anism to directly forward such data from the storage
stack to the GPU stack. Motivated by this observa-
tion, our GPUdrive prototype directly forwards the tar-
get file-associated data from the storage software stack
to the GPU software stack. Specifically, our early-stage
solution reads/writes target file contents to the underly-
ing native file systems such as EXT4 using its own ker-
nel buffer and directly upload the target data from it to
another kernel buffer mapped to GPU device memory
(and vice versa). This system stack, as redesigned by
our GPUdrive prototype, almost completely removes the
need for unnecessary buffer allocations and redundant
memory copies back and forth imposed by user-mode

IThis is because there is no guarantee that the current kernel is run-
ning in the process that the I/O request was initiated
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Figure 6: Upload performance disparity analysis.

and kernel-mode switching and the two different run-
time libraries communications. Therefore, our GPUdrive
prototype can significantly reduce overheads in manag-
ing file-associated data and expose the aggregate perfor-
mance of the local flash array to the GPU.

4 Performance Improvement

In this section, we will show preliminary evaluation re-
sults, that provide how our early-stage GPUdrive ad-
dresses file-driven data movements with less power con-
sumption.

4.1 Experimental Setup

The GPU device we used is an NVIDIA GTX 480 that
employs 480 CUDA cores and 1.2GB DDR3/GDDRS5,
which provides roughly 133 GB/sec data-transfer rates.
This GPU device is connected to our host evaluation
platform, which has an Intel Core 17 and 16GB DDR3,
through PCI Express 2.0 x16 lanes. While the base-
line storage array (RAID-0) employs multiple 7500 RPM
enterprise-scale HDDs, we implement our early-stage of
GPUdrive using multiple commodity SATA-based SSDs.
To evaluate GPU and storage devices, we use benchmark
applications by modifying sample code mainly from the
NVIDIA CUDA SDK [10] and Intel IOmeter [4]. The
bench-rdrd and bench-sqrd benchmarks generate for up-
loading file-associated data with random and sequential
access patterns, respectively. In contrast, bench-rdwr
and bench-sqwr benchmarks generate download scenar-
ios with random and sequential access patterns, respec-
tively. All tests generate fourteen different request sizes
from 4KB to 32MB. Lastly, to measure PCle data move-
ment performance and storage performance, we utilize
the CUDA SDK bandwidthtest [10].

4.2 Upload Performance Analysis

Performance disparity reduction. Figure 6 shows the
percentage of performance disparities between the CPU
and the GPU during file-associated data movement. As
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Figure 7: Upload dynamic power consumption.

shown, the performance of the baseline storage array
only accounts for 4% and 1% of GPU data-transfer rates
in cases where the I/O request size is relatively small (4K
~ 256K). Though the baseline can improve read per-
formance by leveraging system-level striping for large
/O sizes, uploading data-transfer rates under bench-rdrd
and bench-sqrd only account for 20% and 25% of po-
tential GPU bandwidths, respectively. In contrast, since
GPUdrive takes advantage of system-level SSD paral-
lelism to expose full aggregate performance, improve-
ments when compared against the baseline-storage array
range about four times. With large problem data sets, our
GPUdrive prototype reduces the performance disparity
between the CPU and the GPU on bench-rdrd and bench-
sqrd by 90% and 92%, respectively. Considering the fact
that most data-intensive applications perform large I/O
requests (ranging from 1MB to 32MB), GPUdrive can
almost completely address the performance discrepancy
between memory-level transfer and storage accesses.

Dynamic power analysis. Figure 7 shows dynamic
power consumed by the baseline storage array and the
GPUdrive prototype on both bench-rdrd and bench-sqrd,
respectively. One can see from this figure that, our GPU-
drive prototype requires 77% ~ 52% less dynamic power
than the baseline storage array while reducing perfor-
mance disparity between the memory-level transfer and
the storage access by an average of 57%. Specifically, the
early-stage of GPUdrive consumes low dynamic power
ranging from 3.2 watts to 8.6 watts, which can in turn en-
able low power data processing with large problem sets.

4.3 Download Performance Analysis

Performance disparity reduction. Figures 8a and 8b
show the performance disparity between GPU and CPU
for bench-rdwr and bench-sqwr workloads, respectively.
While the data movement rate of the baseline storage ar-
ray only accounts for 1% ~ 30% of the actual data trans-
fer rate of thr GPU, irrespective of which benchmark is
employed, our GPU prototype successfully address the
performance discrepancy between memory-level trans-
fer and storage access. However, unlike the previous
upload performance evaluations, the reduction rates on
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bench-rdwr (see Figure 8a) are limited in our GPUdrive
prototype, which needs to be addressed in future work.
We believe that, this is because the performance of each
of commodity SSDs we employed exhibit poor perfor-
mance on random access patterns, which is also a known
problem in SSD research area [5]. In contrast, as shown
in Figure 8b, our early-stage GPUdrive successfully re-
moves the performance disparity in the case of large I/O
requests (32MB) since it is easier to leverage system-
level SSD parallelism for larger I/O sizes. Similarly,
these performance improvements of our GPUdrive proto-
type continue under bench-sgwr because most incoming
I/O requests can be striped in an interleaving fashion.

Dynamic power analysis. Unlike the previous GPU up-
load analysis, the power consumption on GPU down-
loads varies based on I/O sizes as well as access pat-
terns of our GPU workloads. For bench-rdwr, the base-
line storage array consumes around 18 watts of power,
whereas our early-stage of GPUdrive consumes about
13 watts irrespective of the request sizes. On the other
hands, for bench-sqwr, the GPUdrive prototype require
less power than the baseline storage array by an average
of 30%. We believe that, the main reason why the power
consumption of our GPUdrive prototype on downloads
is not as much promising as for uploads is that, in prac-
tice, most commodity SSDs are well optimized to hide
performance disadvantage of underlying flash medium,
which usually requires higher computations and involves
more internal components.

5 Conclusion

In this paper, we present performance degradation of
GPU-accelerated data processing caused by file-driven
data movement. We remedy this shortcoming by design-
ing a flash array and by optimizing the system software
stacks associated to GPU computing. We then built an
prototype of our design, GPUdrive, using multiple real
commodity SSDs and optimized the system stacks. Our
prototype successfully reduces the performance dispar-
ity between storage accesses and memory-level transfers
with less dynamic power consumption than an conven-
tional storage array by 49%.
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