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MOTIVATION

A Future machines may not be able to run at full power
— Dark Silicon
— Current SoCs prevent damaging hotspots and maintain thermal limits

— Expensive
— Installations consume tens of Megawatts

Practical applications are constrained by power or thermal limitations
The HPC community does not want to sacrifice performance for power

All of the Top 10 machines from the Green 500 leverage GPUs

A A A A

It’s critical to develop power management techniques for emergent irregular

applications on GPUs
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GRAPH ALGORITHMS

A Irregular Applications
— Typically memory bound
— Inconsistent memory access patterns
— Characteristics unknown at compile time
— Interesting data sets are massive

A Graph structures — Not a one size fits all problem
— Scale-free
— Small world
— Road networks
— Meshes
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APPLICATIONS OF GRAPH ALGORITHMS

A Machine Learning

A4 Compiler Optimization
— Register allocation
— Points-to Analysis

Social Network Analysis

Computational Biology

Computational Fluid Dynamics
Urban Planning

Path finding

A A A AN
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BREADTH-FIRST SEARCH

A Choose a source node s to start from

A Explore neighbors of s
— Explore neighbors of neighbors, and so on

4 Building block to more complicated problems
— Betweenness Centrality
— All-pairs Shortest Paths
— Strongly Connected Components

— “Bricks and Mortar” of classical graph algorithms

A Especially useful for parallel graph algorithms
— Depth-First Search is P-Complete
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RECENT WORK ON BFS

4 SHOC Benchmark Suite

— Quadratic [Harish and Narayanan HiPC ‘07]
— Naively assign a thread to every vertex on every iteration

— Lots of unnecessary memory fetches and branch overhead “g_‘"‘\
— Linear with atomics [Luo, Wong, and Hwu DAC '10] .‘,"
[ ]
— Asymptotically Optimal O (m + n) work
— For graphs with n vertices and m edges

— Fastest publicly available OpenCL implementation
— Used for the experiments in this paper

A Linear with prefix sums [Merrill, Garland, and Grimshaw PPoPP ‘12]
— Fastest GPU implementation

4 Direction-Optimizing [Beamer, Asanovié, and Patterson SC’12]
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CHANGE IN PARALLELISM OVER TIME

A Two trends
— Few BFS iterations that process many nodes each
— Scale-free, small world
— Many BFS iterations that process few nodes each
— Road networks, sparse meshes
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EXPERIMENTAL SETUP

4 How do we leverage this information to manage power?
— Two “knobs” of control

— DVES state DDR3 Controller b

AMD HD
Media @88
Accelerator 3

— Number of active Compute Units (CUs)

4 A10-5800K Trinity APU

— 384 Radeon Cores
— 6 SIMD Units
— 16 Lanes with 4-way VLIW
— 3 DVFS States
— High: 800 MHz, 1.275V
— Medium: 633 MHz, 1.2V
— Low: 304 MHz, 0.9375V
— 18 Manageable Power States
— Up to 6 Active SIMDs (Compute Units)
— 3 DVFS States
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POWER MEASUREMENTS

A Measure GPU power directly
— Receive estimates from power management firmware
— Sample power every millisecond

A

Overhead of changing DVFS state ~ microseconds

A

Analyze power configurations offline
— Limitations in changing power states during execution

4 Throughput Baseline
— Low Frequency
— 4 Active CUs

4 Latency Baseline

— Medium Frequency
— 2 Active CUs
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DISTINGUISHING POWER AND ENERGY

4 Our goal is to maximize performance in a power-constrained environment

A Our goal is NOT to minimize energy
— “Race to idle” is not a valid solution
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AMDA

BENCHMARK GRAPHS

coPapersCiteseer 434,102
delaunay n23 8,388,608
asia.osm 11,950,757

Idoor 952,203
af shell10 1,508,065
kkt_power 2,063,494
rgg_n 2 22 s0O 4,194,304
G3_circuit 1,585,478
hugebubbles 00020 21,198,119
in-2004 1,382,908
packing_500x100x100-b050 2,145,852
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16,036,720
25,165,784
12,711,603
22,785,136
25,582,130
6,482,320
30,359,198

3,037,674
31,790,179
13,591,473
17,488,243

Social Network
Random Triangluation
Street Network
Sparse Matrix
Sheet Metal Forming
Nonlinear Optimization

Random Geometric
Graph

AMD Circuit Simulation
2D Dynamic Simulations
Web Crawl

Fluid Mechanics
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STATIC ORACLE

4 Given a graph and power cap, determine the best power state
— Exhaustively run all settings

— Pick the setting that has...
— ...the least execution time
— ...instantaneous power within the cap at all times

— Refer to this setting as the static oracle

— “Static” because the same power setting is used throughout the traversal
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BEST CONFIGURATION VARIES WITH GRAPH INPUT
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4 Consider an 82.18% Power Cap
— Left (delaunay_n23): Medium Frequency and 6 CUs
— Right (G3_Circuit): High Frequency and 5 CUs
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LEVERAGING BOTH DEGREES OF FREEDOM

4 Sometimes it is better to boost
frequency than CUs (af)

4 Sometimes it is better to boost
CUs than frequency (del)

4 Boost both degrees somewhat
rather than boosting one
maximally (in)

4 Reduce one degree to be able
to boost the other (pack)
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AN ALGORITHMIC APPROACH

4 How to determine the best configuration for a given graph and power cap?

A |ntuition: Graphs tend to be more sensitive to either latency or parallelism

— Use simple, offline, graph metrics to determine this sensitivity
— Number of nodes
— Average degree

— Diameter would be ideal, but that requires too much preprocessing
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CLUSTERING

A Red circles: training set

A Blue x’s: Classified via K-
means clustering

4 High average degree
implies a high potential for
load imbalances
— Scale-free, small world

graphs

4 Low average degree means
more uniform work
— Meshes, Road networks
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STATIC RESULTS
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A

Algorithm matches the oracle for 8/9 graphs

h

CU scaling less helpful
— Baseline already has 4 active CUs
— Matter of perspective
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CONCLUSIONS
4 Power optimizations depends heavily on graph structure

4 Frequency boosting is a useful technique
— Already implemented in contemporary HW
— We show that CU boosting is also useful
— ...and that combining Frequency and CU boosting is even better

4 Simple graph metadata suffices for making power management decisions
— No preprocessing required

A4 HW needs to support finer granularities of power management
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IMPROVEMENTS: DYNAMIC ALGORITHM

4 Choose the best configuration at each iteration of the search
— Exhaustively test all iterations at all power configurations
— Choose the fastest of the ones that do not exceed the power cap
— Refer to this setting as the Dynamic Oracle

4 Two ways to improve over the static algorithm
— If the static algorithm classifies a graph incorrectly

— If the vertex frontiers change significantly in size
— Scale CUs when frontiers are small
— Scale frequency when frontiers are large
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DYN A M I C R ES U LTS Comparison of static and dynamic techniques for a 62% Power Cap

T T T
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1.2+ Static oracie &
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‘ MOdeSt improvements Dynamic Oracle m—
- ~5% overall
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A More variation in structure

than available power states 58 d
— Need finer-grained methods §
of power management ;506 .
B
A Small number of iterations 2
dominate s

— Static case can optimize for
these iterations
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