

Proudly Operated by Battelle Since 1965

GEMS: Graph database Engine for Multithreaded Systems

ALESSANDRO MORARI‡, VITO GIOVANI CASTELLANA‡, ORESTE VILLA+, *ANTONINO TUMEO*‡, JESSE WEAVER‡, DAVID HAGLIN‡, SUTANAY CHOUDHURY‡, JOHN FEO‡

‡Pacific Northwest National Laboratory, Richland, WA.+NVIDIA, Santa Clara, CA.

Outline

Introduction

- Motivation and Challenges
- GEMS (Graph database Engine for Multithreaded Systems) overview
- GMT (Global Memory and Threading) overview
 - Two-level message aggregation
 - Lightweight software multithreading
- Experimental results
 - Synthetic benchmarks
 - Berlin SPARQL Benchmarks (BSBM)
- Conclusions

- Many fields require organization, management, and analysis of massive amounts of data
 - E.g.: social network analysis, financial risk management, threat detection in complex network systems, and medical and biomedical databases
- Graph databases
 - Promising solution to store large and heterogeneous datasets of these application fields
 - Organize data in form of triples
 - Subject-predicate-object
 - Following the Resource Description Framework (RDF)
 - Set of triples represent a labeled, directed multigraph
 - Queried through languages such as SPARQL
 - Fundamental operation is graph matching

Using graphs

Graph benefits

- Graphs are memory efficient for storing heterogeneous or not rigidly structured data
- Graph methods (based on edge traversal) are inherently parallel

Graph challenges

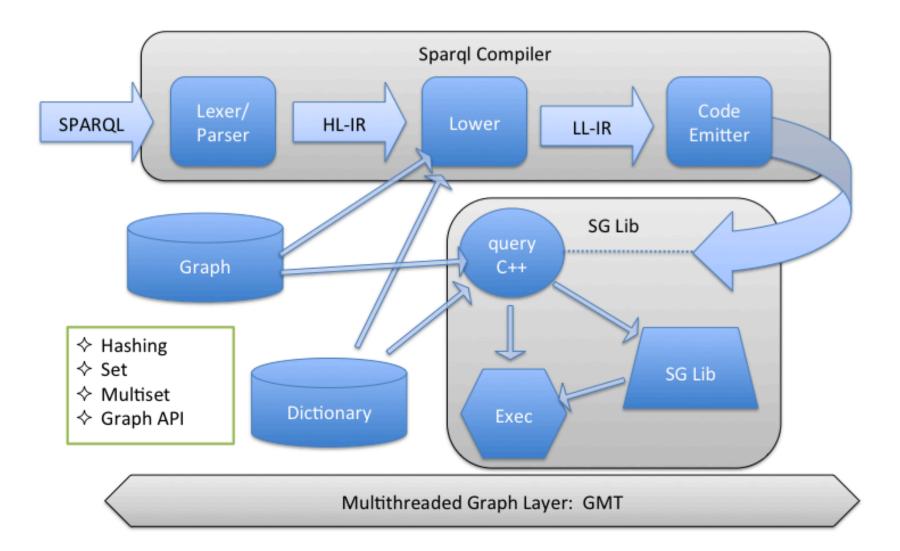
- Fine-grained data accesses
 - size of a pointer, or an of an element of a linked list
- Unpredictable data accesses
- Very difficult to partition
- Parallel graph methods may have high synchronization intensity

Commodity clusters and graph algorithms

Benefits of commodity clusters

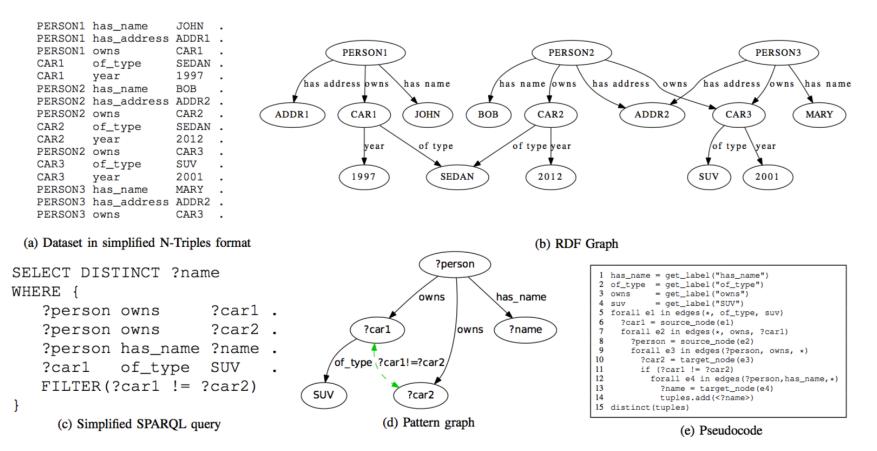
- Low costs
- High core count
- Increasing memory per node
- Increasing network bandwidth

Challenges of commodity clusters


- Processors optimized for locality
 - Deep cache hierarchies
- Networks optimized for batched data transfer

Pacific North

idly Operated by Battelle Since 1965



GEMS example

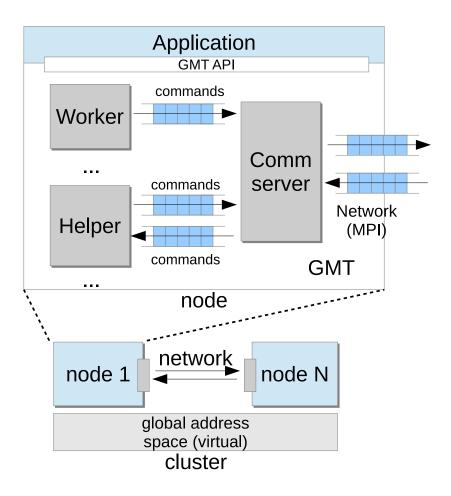
Return the names of all persons owning at least two cars, of which at least one is a SUV

Addressing Commodity Cluster Limitations

- Custom runtime layer
 - GMT Global Memory and Threading
 - NOT a general runtime Deeply customized for the database requirements
- Partitioned Global Address Space (PGAS) data model
- Lightweight software multithreading to hide latency of remote operations
- Asynchronous user level task parallelism
 - Loop level parallelism (parFor)
 - (limited) support for active messages
- Two-level message aggregation

Pacific North

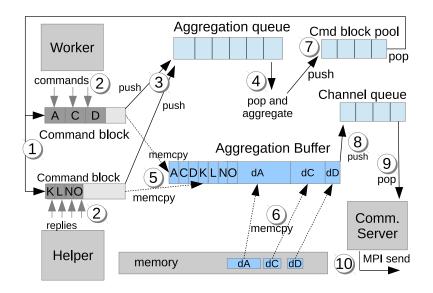
dly Operated by Battelle Since 1965


GMT architecture

 Three classes of pthreads (pinned to cores)

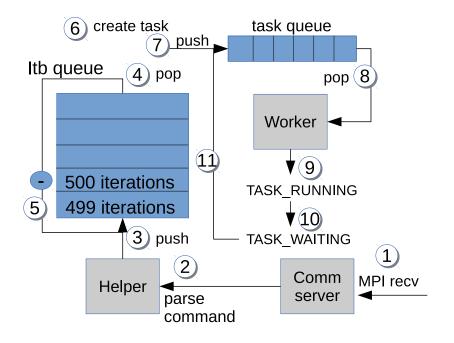
Worker

- Executes application code through lightweight tasks
- Helper
 - PGAS and communication management
- Communication ServerMPI communication



Message aggregation

Two-level aggregation

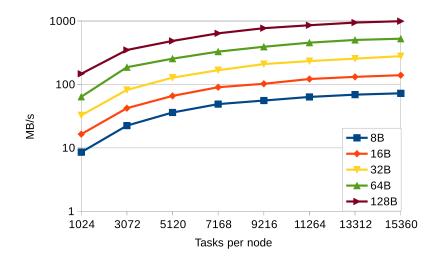

- Queues are per destination node
- Command blocks
 - "local" to a core
- Aggregation queues
 - Common to a node
- Aggregation buffers
 - Buffers where data are effectively copied before an MPI send operation

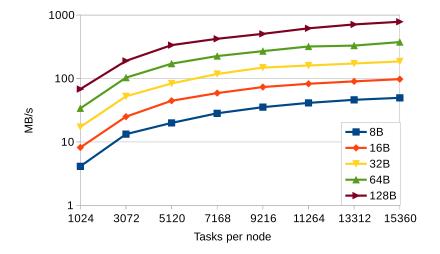
Multithreading

- A node receives commands to spawn tasks
 - Commands are related to iterations of loops
- A helper parses the commands and pushes the task on the iteration block queue (itb)
- A worker pops some iteration from the itb, and generates the task contexts in its local task queue
- When a task generate a (blocking) remote operation, the worker switches to another task

Experimental Setup

- Olympus supercomputer (PIC Pacific Northwest National Laboratory's Institutional Computing)
- 604 nodes
 - Infiniband QDR (4 GB/s theoretical peak bandwidth)
 - 2 Opteron 6272 per node
 - 2.1 GHz
 - 2 dies, 4 "modules" per die (8 integer "cores", 4 floating point cores)
 - Each module: 2 x 16 KB data cache, 64 KB instruction cache, 2 MB L2
 - 8 MB L3 per die
 - 64 GB DDR3-1600 per node
- Parameters
 - 15 workers, 15 helpers, 1 communication server
 - 1024 tasks per worker
 - 64 KB aggregation buffers
- Benchmarks
 - Synthetic GMT
 - Berlin SPARQL Benchmark (BSBM) GEMS


Synthetic Benchmarks – Bandwidth while Increasing the Number of Tasks per Node



Proudly Operated by Battelle Since 1965

2 nodes

128 nodes

BSBM - GEMS

Proudly Operated by Battelle Since 1965

Nodes	2	4	8	16
build	199.00	106.99	59.85	33.42
Q1	1.83	1.12	0.67	0.40
Q2	0.07	0.07	0.07	0.05
Q3	4.07	2.73	1.17	0.65
Q4	0.13	0.13	0.14	0.15
Q5	0.07	0.07	0.07	0.11
Q6	0.01	0.02	0.02	0.03

(a) 100M triples, 2 to 16 nodes

Nodes	8	16	32	64
build	628.87	350.74	200.54	136.69
Q1	5.65	3.09	1.93	2.32
Q2	0.30	0.34	0.23	0.35
Q3	12.79	6.88	4.50	2.76
Q4	0.31	0.25	0.22	0.27
Q5	0.11	0.12	0.14	0.18
Q6	0.02	0.03	0.04	0.05

Nodes	64	128
build	1066.27	806.55
Q1	27.14	39.78
Q2	1.48	1.91
Q3	24.27	18.32
Q4	2.33	2.91
Q5	2.13	2.82
Q6	0.40	0.54

Time (in seconds) to build the database and execute BSBM queries 1-6 with 100M, 1B and 10B triples. Query execution time is an average of the time to obtain the results of a query when 100 queries of the same type run concurrently

⁽b) 1B triples, 8 to 64 nodes

⁽c) 10B triples, 64 and 128 nodes

Conclusions

- Presented GEMS Graph database Engine for Multithreaded Systems
 - Full software stack for graph databases on commodity clusters
 - Utilizes almost only graph-based methods across all the layers
 - Includes: SPARQL-to-C++ compiler, a library of algorithms and data structures, and a custom runtime (GMT)
- Discussed the runtime (GMT Global Memory and Threading)
 - Global address space
 - Lightweight software multithreading
 - Message aggregation
 - Customized to the needs of the database
- Demonstrated how this integrated approach provides scaling in size and performance as more nodes are added to the cluster

Thank you for your attention!

Proudly Operated by Battelle Since 1965

Questions?

- alessandro.morari@pnnl.gov
- vitoGiovanni.castellana@pnnl.gov
- ovilla@nvidia.com
- antonino.tumeo@pnnl.gov
- jesse.weaver@pnnl.gov
- <u>david.haglin@pnnl.gov</u>
- sutanay.choudhury@pnnl.gov
- john.feo@pnnl.gov