GEMS: Graph database Engine for Multithreaded
Systems

Alessandro Morari, Vito Giovanni Castellana, Antonino Tumeo,
Jesse Weaver, David Haglin, Sutanay Choudhury, John Feo
Pacific Northwest National Laboratory
902 Battelle Blvd
Richland, WA 99354, USA
{alessandro.morari, vitoGiovanni.castellana, antonino.tumeo,
jesse.weaver, david.haglin, sutanay.choudhury, john.feo} @pnnl.gov
Oreste Villa
NVIDIA Research
2701 San Tomas Expressway
Santa Clara, CA 95050, USA
ovilla@nvidia.com

Abstract—This paper presents GEMS (Graph database En-
gine for Multithreaded Systems), a software infrastructure that
enables large-scale, graph databases on commodity clusters.
Unlike current approaches, GEMS implements and explores
graph databases by primarily employing graph-based methods.
This is reflected in all the layers of the software stack. On one
hand, this allows exploiting the space efficiency of graph data
structures and the inherent parallelism of some graph algorithms.
These features adapt well to the increasing system memory
and core counts of modern commodity clusters. On the other
hand, however, graph-based methods introduce irregular, fine-
grained data accesses with poor spatial and temporal locality,
causing performance issues with these systems that are, instead,
optimized for regular computation and batched data transfers.
Our framework comprises: a SPARQL to data parallel C++
compiler; a library of distributed data structures; and a custom,
multithreaded, runtime system. We introduce our stack, motivate
its advantages with respect to other solutions, and show how we
solved the challenges posed by irregular behaviors. We evaluate
our software stack on the Berlin SPARQL benchmark with
datasets up to 10 billion graph edges, demonstrating scaling in
dataset size and in performance as nodes are added to a cluster.

I. INTRODUCTION

Many fields require organization, management, and anal-
ysis of massive amounts of data; such fields include social
network analysis, financial risk management, threat detection
in complex network systems, and medical and biomedical
databases. These are all examples of big data analytics in
which dataset sizes increase exponentially. These application
fields pose operational challenges not only in terms of sheer
size but also in terms of time to solution because quickly
answering queries is essential to obtain market advantages,
avoid critical security issues, or prevent life threatening health
problems.

Semantic graph databases seem a promising solution to
store, manage, and query the large and heterogeneous datasets
of these application fields. Such datasets present an abundance
of relations among many elements. Semantic graph databases
organize the data in the form of subject-predicate-object triples
following the Resource Description Framework (RDF) data

model. A set of triples naturally represent a labeled, directed
multigraph. An analyst can query semantic graph databases
through languages such as SPARQL in which the fundamental
query operation is graph matching. This is different from
conventional relational databases that employ schema-specific
tables to store data and perform select and conventional join
operations when executing queries. With relational approaches,
graph-oriented queries on large datasets can quickly become
unmanageable in both space and time due to the large sizes of
immediate results created when performing conventional joins.

Graphs are memory efficient data structures for storing
data that is heterogeneous or not itself rigidly structured.
Graph methods based on edge traversal are inherently parallel
because the system can potentially generate parallel activities
for (single or group of) vertex or edge to be traversed. Modern
commodity clusters — composed of nodes with increasingly
higher core counts, larger main memory, and faster network
interconnections — are an interesting target platform for in-
memory crawling of big graphs, potentially enabling scaling
in size by adding more nodes, while maintaining constant
throughput. However, graph-based methods are irregular: they
exhibit poor spatial and temporal locality, perform fine-grained
data accesses, usually present high synchronization intensity,
and have datasets with high data skew which can lead to severe
load imbalance. These characteristics make the execution of
graph exploration algorithms on commodity clusters challeng-
ing. In fact, modern clusters are optimized for applications
that exhibit regular behaviors, high (floating point) arithmetic
intensity, and have easily partition able datasets with high
locality: they integrate multicore processors with high flop
ratings and complex cache hierarchies, and networks that
reach peak bandwidth only with large, batched data transfers.
However, the parallelism of graph-based methods can be
exploited to realize multithreaded execution models that create
and manage an oversubscription of tasks to cores, allowing
for toleration of data access latency, rather than reducing it
through locality.

In this paper, we present GEMS (Graph database Engine
for Multithreaded Systems), a complete software stack that

Spargl Compiler
N P Y i Ve >
\
SPARQL < - A

< Hashing
<4 Set
< Multiset [=
< Graph API

< Multithreaded Graph Layer: GMT

Fig. 1: Architecture of GEMS - Graph database Engine for
Multithreaded Systems.

implements a semantic graph database for big data analytics
on commodity clusters. Currently available semantic graph
databases usually implement mechanisms to store, retrieve,
and query triples on top of conventional relational databases,
or still resort to relational approaches for some of their compo-
nents. In contrast, GEMS approaches semantic graph databases
primarily with graph-based methods at all the levels of the
stack. GEMS includes: a compiler that converts SPARQL
queries to data parallel graph pattern matching operations in
C++; a library of parallel algorithms and related, distributed
data structures; and a custom, multithreaded, runtime layer for
commodity clusters.

We describe GEMS and its underlining runtime, discussing
how we solved limitations of commodity clusters with applica-
tions that exhibit irregular behaviors to enable scaling in size
and performance.

II. GEMS OVERVIEW

Figure 1 provides an overview of the architecture of our
Graph database Engine for Multithreaded Systems (GEMS).
As previously introduced, GEMS comprises: a SPARQL to
C++ compiler; a Semantic Graph library (SGLib) of sup-
porting data structures such as graph and dictionary with the
related parallel Application Programming Interface (API) to
access them; and a Global Memory and Threading (GMT)
runtime layer.

The top layer consists of the compilation phases. The com-
piler transforms the input SPARQL queries into intermediate
representations that are analyzed for optimization opportu-
nities. Potential optimization opportunities are discovered at
multiple levels. Depending on statistics of the datasets, certain
query clauses can be moved, enabling early pruning of the
search. Then, the optimized intermediate representation is
converted into C++ code that contains calls to the SGLib API.
SGLib APIs completely hide the low-level APIs of GMT,
exposing to the compiler a lean, simple, pseudo-sequential
shared-memory programming model. SGLib manages the
graph database and query execution. SGLib generates the
graph database and the related dictionary by ingesting the
triples. Triples can, for example, be RDF triples stored in
N-Triples format. The approach implemented by our system
to extract information from the semantic graph database is
to solve a structural graph pattern matching problem. GEMS

employs a variation of Ullmann’s subgraph isomorphism al-
gorithm [1]. The GMT layer provides the key features that
enable management of the data structures and load balancing
across the nodes of the cluster. GMT is co-designed with
the upper layers of the graph database engine so as to better
support the irregularity of graph pattern matching operations.
GMT provides a Partitioned Global Address Space (PGAS)
data model, hiding the distributed nature of the cluster. GMT
exposes to SGLib an API that permits allocating, accessing,
and freeing data in the virtual shared memory. Differently from
other PGAS libraries, GMT employs a control model typical of
shared-memory systems: fork-join parallel constructs that gen-
erate thousands of lightweight tasks. These lightweight tasks
allow hiding the latency for accessing data on remote cluster
nodes; they are switched in and out of processor cores while
communication proceeds. Finally, GMT aggregates operations
before communicating to other nodes, increasing network
bandwidth utilization.

Figure 2 shows an example RDF dataset and a related query
in different stages of compilation. Figure 2a shows the dataset
in N-Triples format (a common serialization format for RDF),
and Figure 2b shows the corresponding graph representation.
Figure 2¢ shows the SPARQL description of the query, Figure
2d illustrates its graph pattern, and Figure 2e shows the
pseudocode generated by the compiler and executed by GMT
through SGLib.

GEMS has minimal system-level library requirements: be-
sides Pthreads, it only needs MPI for the GMT communi-
cation layer and Python for some compiler phases and for
glue scripts. Currently, GEMS also requires x86-compatible
processors because GMT employs optimized context switch-
ing routines. However, this requirement may be removed
by developing specific context switching routines for other
architectures.

III. RELATED APPROACHES

Many commercial and open source SPARQL engines are
available. We can distinguish between purpose-built databases
for the storage and retrieval of triples (triplestores), and
solutions that try to map triple stores on top of existing
commercial databases, usually relational SQL-based systems.
However, obtaining feature-complete SPARQL-to-SQL trans-
lation is difficult, and may introduce performance penalties.
Translating SPARQL to SQL implies the use of relational
algebra to perform optimizations, and the use of classical
relational operators (e.g., conventional joins and selects) to
execute the query. By translating SPARQL to graph pattern
matching operations, GEMS reduces the overhead for inter-
mediate data structures and can exploit optimizations that look
at the execution plan (i.e., order of execution) from a graph
perspective.

SPARQL engines can further be distinguished between
solutions that process queries in-memory and solutions that
store data on disks and perform swapping. Jena (with the ARQ
SPARQL engine [2]), Sesame [3], and Redland [4] (aka librdf)
are all example of RDF libraries that natively implement in-
memory RDF storage and support integration with some disk-
based, SQL backends. OpenLink Virtuoso [5] implements a
RDF/SPARQL layer on top of their SQL-based column store
for which multi-node, cluster support is available. GEMS

PERSON1 has_name JOHN
PERSON1 has_address ADDR1 .

PERSON1 owns CAR1 .
CAR1 of_type SEDAN .
CAR1 year 1997
PERSON2 has_name BOB .
PERSON2 has_address ADDR2 .
PERSON2 owns CAR2 .
CAR2 of_type SEDAN .
CAR2 year 2012
PERSON2 owns CAR3
CAR3 of_type Suv
CAR3 year 2001
PERSON3 has_name MARY

PERSON3 has_address ADDR2 .
PERSON3 owns CAR3

(a) Dataset in simplified N-Triples format

SELECT DISTINCT ?name

WHERE {
?person owns ?carl
?person owns ?car?2
?person has_name ?name
?carl of_type SUV
FILTER (?carl != ?car2)

(c) Simplified SPARQL query

(d) Pattern graph

has_name =

of_type =

3 owns = get_label ("owns")
suv = get_label ("SUV")

1 get_label ("has_name")

2

3

4

5 forall el in edges(x, of_type, suv)
6

7

8

get_label ("of_type")

?carl = source_node (el)
forall e2 in edges(*, owns, 2carl)
?person = source_node (e2)

9 forall e3 in edges (?person, owns, *)
10 ?car2 = target_node (e3)
11 if (?carl != ?car2)
12 forall e4 in edges (?person,has_name,)
13 ?name = target_node (e4)
14 tuples.add(<?name>)
15 distinct (tuples)

(e) Pseudocode

Fig. 2: Example RDF Dataset and example query: “return the names of all persons owning at least two cars, of which at least

one is a SUV”.

adopts in-memory processing: it stores all data structures in
RAM. In-memory processing potentially allows increasing the
dataset size while maintaining constant query throughput by
adding more cluster nodes.

Some approaches leverage MapReduce infrastructures for
RDF-encoded databases. SHARD [6] is a triplestore bu ilt
on top of Hadoop, while YARS2 [7] is a bulk-synchronous,
distributed, query answering system. Both exploit hash parti-
tioning to distribute triples across nodes. These approaches
work well for simple index lookups, but they also present
high communication overheads for moving data through the
network with more complex queries, as well as introduce
load-balancing issues in the pr esence of data skew. More
general graph libraries, such as Pregel [8], Giraph [9], and
GraphLab [10] may also be exploited to explore semantic
databases, once the source data have been converted into a
graph. However, they require significant additions to work in a
database environment, and they still rely on bulk-synchronous,
parallel models that do not perform well for large and complex
queries. Our system relies on a custom runtime that provides
specific features to support exploration of a semantic database
through graph-based methods.

Urika is a commercial shared memory system from Yarc-
Data [11] targeted at big data analytics. Urika exploits cus-
tom nodes with purpose-built multithreaded processors (barrel
processors with up to 128 threads and a very simple cache)
derived from the Cray XMT. Beside multithreading, which
allows tolerating latencies for accessing data on remote nodes,
the system has hardware support for a scrambled global
address space and fine-grained synchronization. These features
allow more efficient execution of irregular applications, such
as graph exploration. On top of this hardware, YarcData
interfaces with the Jena framework to provide a front-end
API. GEMS, instead, exploits clusters built with commodity
hardware that are cheaper to acquire and maintain, and which

are able to evolve more rapidly than custom hardware.

IV. GMT: ADDRESSING LIMITATIONS OF COMMODITY
CLUSTERS WITH IRREGULAR ALGORITHMS

The GMT runtime system enables GEMS to scale in
size and performance on commodity clusters. GMT is built
around three main “pillars”: global address space, latency
tolerance through fine-grained software multithreading, and
remote data access aggregation (also known as coalescing).
Global address space (through PGAS) relieves the other layers
of GEMS from partitioning the data structures and from
orchestrating communication. Message aggregation maximizes
network bandwidth utilization, despite the small data accesses
typical of graph methods on shared-memory systems. Fine-
grained multithreading allows hiding the latency for remote
data transfers, and the added latency for aggregation, by
exploiting the inherent parallelism of graph algorithms. Figure
3a shows the high-level design of GMT. Each node executes
an instance of GMT. Different instances communicate through
commands, which describe data, synchronization, and thread
management operations. GMT is a parallel runtime with three
types of specialized threads. The main idea is to exploit the
cores of modern processors to support the functionalities of
the runtime. The specialized threads are:

Worker: executes application code, in the form of
lightweight user tasks, and generates commands directed to
other nodes;

Helper: manages global address space and synchronization,
and handles incoming commands from other nodes;

Communication Server: endpoint for the network, it man-
ages all incoming/outgoing communication at the node level
in form of network messages, which contain the commands.

The specialized threads are implemented as POSIX threads,
each one pinned to a core. The communication server employs
MPI to send and receive messages to and from other nodes.

There are multiple helpers and workers per node (usually an
equal number, although this is one of the tunable parameters
depending on the target machine) and a single communication
server.

SGLib contains data structures that are implemented using
shared arrays in GMT’s virtual global address space. Among
them, there are the graph data structure and the related
dictionary. The dictionary is used to map vertex and edge
labels (actually RDF terms) to unique integer identifiers. This
allows us to compress the graph representation in memory
as well as perform label/term comparisons much more effi-
ciently. Dictionary encoding is common practice in database
systems. The SPARQL-to-C++ compiler assumes to operate
on a shared-memory system and does not need to reason
about the physical partitioning of the database. However, as
is common in PGAS libraries, GMT also exposes locality
information, allowing reduction of data movements whenever
possible. Because graph exploration algorithms mostly have
loops that run through edge or vertex lists, GMT provides a
parallel loop construct that maps loop iterations to lightweight
tasks. GMT supports task generation from nested loops and
allows specifying the number of iterations of a loop mapped
to a task. GMT also allows controlling code locality, enabling
to spawn (or move) tasks on preselected nodes, instead of
moving data. SGLib routines exploit these features to better
manage its internal data structures. SGLib routines access data
through put and get communication primitives, moving them
into local space for manipulation and writing them back to the
global space. The communication primitives are available both
with blocking and non-blocking semantics. GMT also provides
atomic operations, such as atomic addition and test-and-set,
on data allocated in the global address space. SGLib exploits
them to protect parallel operations on the graph datasets and
to implement global synchronization constructs for database
management and querying.

A. Aggregation

Graph exploration algorithms present fine grained data ac-
cesses: for-loops effectively run through edges and/or vertices
represented by pointers, and each pointer may point to a loca-
tion in a completely unrelated memory area. With partitioned
datasets on distributed memory systems, expert programmers
have to implement by hand optimizations to aggregate requests
and reduce the overhead due to small network transactions.
GMT hides these complexities from the other layers of GEMS
by implementing automatic message aggregation.

GMT collects commands directed towards the same desti-
nation nodes in aggregation queues. GMT copies commands
and their related data (e.g., values requested from the global
address space with a get) into aggregation buffers, and sends
them in bulk. Commands are then unpacked and executed at
the destination node. At the node level, GMT employs high-
throughput, non-blocking aggregation queues, which support
concurrent access from multiple workers and helpers. Access-
ing these queues for every generated command would have a
very high cost. Thus, GMT employs a two-level aggregation
mechanism: workers (or helpers) initially collect commands
in local command blocks, and then they insert command
blocks into the aggregation queues. Figure 3b describes the
aggregation mechanism. When aggregation starts, workers (or

helpers) request a pre-allocated command block from the
command block pool (1). Command blocks are pre-allocated
and reused for performance reasons. Commands generated
during program execution are collected into the local command
block (2). A command block is pushed into aggregation queues
when: (a) it is full, or (b) when it has been waiting longer
than a pre-determined time interval. Condition (a) is true
when all the available entries are occupied with commands, or
when the equivalent size in bytes of the commands (including
any attached data) reaches the size of the aggregation buffer.
Condition (b) allows setting a (configurable) upper bound for
the latency added by aggregation. After pushing a command
block, when a worker or a helper finds that the aggregation
queue has sufficient data to fill an aggregation buffer, it
starts popping command blocks from the aggregation queue
and copying them with the related data into an aggregation
buffer (4, 5, and 6). Aggregation buffers also are pre-allocated
and recycled to save memory space and eliminate allocation
overhead. After the copy, command blocks are returned to
the command block pool (7). When the aggregation buffer is
full, the worker (or helper) pushes it into a channel queue (8).
Channel queues are high-throughput, single-producer, single-
consumer queues that workers and helpers use to exchange
data with the communication server. If the communication
server finds a new aggregation buffer in one of the channel
queues, it pops it (9) and performs a non-blocking MPI send
(10). The aggregation buffer is then returned into the pool of
free aggregation buffers.

The size of aggregation buffers and the time intervals for
pushing out aggregated data are configurable parameters that
depends on the interconnection of the cluster on which GEMS
resides. Buffers should be sufficiently large to maximize
network throughput, while time intervals should not increase
the latency over the values maskable through multithreading.

B. Multithreading

Concurrency, through fine-grained software multithreading,
allows tolerance for both the latency for accessing data on
remote nodes and the added latency for aggregating com-
munication operations. Each worker executes a set of GMT
tasks. The worker switches among tasks’ contexts every time it
generates a blocking command that requires a remote memory
operation. The task that generated the command executes
again only when the command itself completes (i.e., it gets
a reply back from the remote node). In case of non-blocking
commands, the task continues executing until it encounters a
wait primitive.

GMT implements custom context switching primitives that
avoid some of the lengthy operations (e.g., saving and restoring
signal mask) performed by the standard /ibc context switching
routines. Figure 3¢ schematically shows how GMT executes a
task. A node receives a message containing a spawn command
(1) that is generated by a worker on a remote node when
encountering a parallel construct. The communication server
passes the buffer containing the command to a helper that
parses the buffer and executes the command (2). The helper
then creates an iteration block (itb). The itb is a data structure
that contains the function to execute, the arguments of the
function itself, and a counter of tasks that execute the same
function. This way of representing a set of tasks avoids the cost

Application
— GMT API el

commands

Worker [+

commands

task queue

(7
Network
Helper SIEEEEEE. (MPI Aggregation queue ¢y Dlockpo}ﬂ Itb queue (4) pop
Worker CITTTTT QO s
commands GMT - K
commanas 2) .0 /(3 é)‘ Push Worker
Prrd pu Channel queue
node .- push pop and p=
_________ aggregate (*(\9)
_________ ® 500 iterations TASK_RUNNING
network P (9) 499 iterations +
node 1 |«—— nodeN Command block - ()
KNG o (3) push TASK_WAITING ®
e 5 @
(/ C b \
‘ global address ‘ ropies 2 / R - =\2) Comm | MPI recy
space (virtual) - [i p parse server |4———
cluster PEr] | memory | dg|MPigene command

(a) Architecture of GMT

(b) Aggregation mechanism

(c) Fine-grained multithreading management

Fig. 3: GMT architecture, aggregation mechanism and multithreading

of creating a large number of function arguments and sending
them over the network. In the following step, the helper pushes
the iteration block into the itb queue (3). Then, an idle worker
pops an itb from the itb queue (5), decreases the counter of
t and pushes it back into the queue (6). The worker creates ¢
tasks (6) and pushes them into its private task queue (7). At
this point, the idle worker can pop a task from its task queue
(8). If the task is executable (i.e., all the remote operations
completed), the worker restores the task’s context and executes
it (9). Otherwise, it pushes the task back into the task queue.
If the task contains a blocking remote request, the task enters
a waiting state (10) and is reinserted into the task queue for
future execution (11).

This mechanism provides load balancing at the node level
because each worker gets new tasks from the itb queue as soon
as its task queue is empty. At the cluster level, GMT evenly
splits tasks across nodes when it encounters a parallel for-loop
construct. If, instead, a task creation addresses a specific node,
the task is created on that node.

V. EXPERIMENTAL RESULTS

We evaluated GEMS on the Olympus supercomputer at Pa-
cific Northwest National Laboratory’s Institutional Computing
center, listed in the TOP500 [12]. Olympus is a cluster of
604 nodes interconnected through a QDR Infiniband switch
with 648 ports (theoretical peak of 4GB/s). Each of Olympus’
node features two AMD Opteron 6,272 processors at 2.1 GHz
and 64 GB of DDR3 memory clocked at 1,600 MHz. Each
socket hosts eight processor modules (two integer cores, one
floating point core per module) on two different dies, for a
total of 32 integer cores per node. We configured the GEMS
stack with 15 workers, 15 helpers, and 1 communication
server per node. Each worker hosts up to 1,024 lightweight
tasks. We measured the MPI bandwidth of Olympus with the
OSU Micro-Benchmarks 3.9 [13], reaching a peak (around 2.8
GB/s) with messages of at least 64 KB. Therefore, we set the
aggregation buffer size at 64 KB. Each communication channel
hosts up to four buffers. There are two channels per helper and
one channel per worker. We initially present some synthetic
benchmarks of the runtime, highlighting the combined effects

of multithreading and aggregation to maximize network band-
width utilization. We then show experimental results of the
whole GEMS infrastructure on a well established benchmark,
the Berlin SPARQL Benchmark (BSBM) [14].

A. Synthetic Benchmarks

Figure 4 shows the transfer rates reached by GMT with
small messages (from 8 to 128 bytes) when increasing the
number of tasks. Every task executes 4,096 blocking put oper-
ations. Figure 4a shows the bandwidth between two nodes, and
Figure 4b shows the bandwidth among 128 nodes. The figures
show how increasing the concurrency increases the transfer
rates, because there is a higher number of messages that GMT
can aggregate. For example, across two nodes (Figure 4a) with
1,024 tasks each, puts of eight bytes reach a bandwidth of
8.55 MB/s. With 15,360 tasks, instead, GMT reaches 72.48
MB/s. When increasing message sizes to 128 bytes, 15,360
tasks provide almost 1 GB/s. For reference, 32 MPI processes
with 128B messages only reach 72.26M B/s. With more
destination nodes, the probability of aggregating enough data
to fill a buffer for a specific remote node decreases. Although
there is a slight degradation, Figure 4b shows that GMT is still
very effective. For example, 15,360 tasks with 16B messages
reach 139.78 MB/s, while 32 MPI processes only provide up
to 9.63 MB/s.

B. GEMS

BSBM defines a set of SPARQL queries and datasets to
evaluate the performance of semantic graph databases and
systems that map RDF into other kinds of storage systems.
Berlin datasets are based on an e-commerce use case with
millions to billions of commercial transactions, involving
many product types, producers, vendors, offers, and reviews.
We run queries one through six of the Business Intelligence
use-case on datasets with 100M, 1B, and 10B triples.

The subtables of Table I respectively show the build time of
the database and the execution time of the queries on 100M
(Subtable Ia), 1B (Subtable Ib), and 10B (Subtable Ic) triples,
while progressively increasing the number of cluster nodes.
Sizes of the input files respectively are 21 GB (100M), 206

1000

100

MB/s

-8B
——16B
32B

) —i— 64B

1024 3072 5120 7168 9216

Tasks per node

11264 13312 15360

(a) Transfer rates of put operations between 2 nodes while
increasing concurrency

1000

100

MB/s

-&-8B
——16B
32B

4 —4— 64B

1024 3072 5120 7168 9216

Tasks per node

11264 13312 15360

(b) Transfer rates of put operations among 128 nodes (one to all)
while increasing concurrency

Fig. 4: Synthetic benchmarks showing aggregation and multithreading effects

Nodes 2 4 8 16 Nodes 8 16 32 64 Nodes 64 128
build | 199.00 | 106.99 | 59.85 | 33.42 build | 628.87 | 350.74 | 200.54 | 136.69 build | 1066.27 | 806.55
Q1 1.83 1.12 0.67 0.40 Q1 5.65 3.09 1.93 2.32 Q1 27.14 39.78
Q2 0.07 0.07 0.07 0.05 Q2 0.30 0.34 0.23 0.35 Q2 1.48 1.91
Q3 4.07 2.73 1.17 0.65 Q3 12.79 6.88 4.50 2.76 Q3 24.27 18.32
Q4 0.13 0.13 0.14 0.15 Q4 0.31 0.25 0.22 0.27 Q4 2.33 291
Q5 0.07 0.07 0.07 0.11 Qs 0.11 0.12 0.14 0.18 Q5 2.13 2.82
Q6 0.01 0.02 0.02 0.03 Q6 0.02 0.03 0.04 0.05 Q6 0.40 0.54

(a) 100M triples, 2 to 16 nodes

(b) 1B triples, 8 to 64 nodes

(c) 10B triples, 64 and 128 nodes

TABLE I: Time (in seconds) to build the database and execute BSBM queries 1-6 with 100M, 1B and 10B triples.

GB (1B), and 2 TB (10B). In all cases, the build time scales
with the number of nodes. Considering all the three subtables
together, we can appreciate how GEMS scales in dataset sizes
by adding new nodes, and how it can exploit the additional
parallelism available. With 100M triples, Q1 and Q3 scale for
all the experiments up to 16 nodes. Increasing the number
of nodes for the other queries, instead, provides constant or
slightly worse execution time. Their execution time is very
short (under 0.5 seconds), and the small dataset does not
provide sufficient data parallelism. These queries only have
two graph walks with two-level nesting and, even with larger
datasets, GEMS is able to exploit all the available parallelism
already with a limited number of nodes. Furthermore, the
database has the same overall size, but is partitioned on more
nodes, thus the communication increases, slightly reducing
the performance. With 1B triples, we see similar behavior.
In this case, however, Q1 stops scaling at 32 nodes. With
64 nodes, GEMS can execute queries on 10B triples. Q3 still
scales in performance up to 128 nodes, while the other queries,
except Q1, approximately maintain stable performance. Ql
experiences the highest decrease in performance when using
128 nodes because its tasks present higher communication
intensity than the other queries, and GEMS already exploited
all the available parallelism with 64 nodes. These data confirm
that GEMS can maintain constant throughput when running
sets of mixed queries in parallel, i.e., in typical database usage.

VI. CONCLUSIONS

In this paper we presented GEMS, a full software stack
for semantic graph databases on commodity clusters. Dif-
ferent from other solutions, GEMS proposes an integrated
approach that primarily utilizes graph-based methods across
all the layers of its stack. GEMS includes a SPARQL-to-
C++ compiler, a library of algorithms and data structures,
and a custom runtime. The custom runtime (GMT - Global

Memory and Threading) provides to all the other layers several
features that simplify the implementation of the exploration
methods and makes more efficient their execution on com-
modity clusters. GMT provides a global address space, fine-
grained multithreading (to tolerate latencies for accessing data
on remote nodes), remote message aggregation (to maximize
network bandwidth utilization), and load balancing. We have
demonstrated how this integrated approach provides scaling in
size and performance as more nodes are added to the cluster.

REFERENCES

[1] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J. ACM,

vol. 23, no. 1, pp. 31-42, Jan. 1976.

[2] “ARQ - A SPARQL Processor for Jena.” [Online]. Available:
http://jena.sourceforge.net/ ARQ/
[3] “openRDF.org, home of Sesame.” [Online]. Available:

http://www.openrdf.org

“Redland RDF Libraries.” [Online]. Available: http://librdf.org
“Virtuoso Universal Server.” [Online]. Available:
http://virtuoso.openlinksw.com

K. Rohloff and R. E. Schantz, “High-performance, massively scalable
distributed systems using the MapReduce software framework: the
SHARD triple-store,” in PSI EtA ’10: Programming Support Innovations
for Emerging Distributed Applications, 2010, pp. 4:1-4:5.

A. Harth, J. Umbrich, A. Hogan, and S. Decker, “YARS2: a feder-
ated repository for querying graph structured data from the web,” in
ISWC’07/ASWC’07: 6th International Semantic Web and 2nd Asian
Semantic Web Conference, 2007, pp. 211-224.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in SIGMOD ’10: ACM International Conference on Management of
data, 2010, pp. 135-146.
“Apache Giraph.”
http://incubator.apache.org/giraph/
“Graphlab.” [Online]. Available: http://graphlab.org

“YarcData, Inc. Urika Big Data Graph Appliance.” [Online]. Available:
http://www.cray.com/Products/ BigData/uRiKA.aspx
“TOP500 - PNNL’s Olympus entry.” [Online].
http://www.top500.o0rg/system/177790

“OSU Micro-Benchmarks.” [Online]. Available: http://mvapich.cse.ohio-
state.edu/benchmarks/

C. Bizer and A. Schultz, “The Berlin SPARQL Benchmark,” Int. J.
Semantic Web Inf. Syst., vol. 5, no. 2, pp. 1-24, 2009.

[4]
[5]

[6]

[7]

[8]

[9] Available:

[10]
[11]

[Online].

[12] Available:
[13]

[14]

