Extreme Scale Computer Architecture: Energy Efficiency from the Ground Up

Josep Torrellas
Department of Computer Science
University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu

ASBD
June 2014
Wanted: Energy-Efficient Computing

• **State of the Art:**

 Performance: 11 PF
 Power: 6-11 MW (idle to loaded)
 10MW = $10M per year electricity

 University of Illinois Blue Waters Supercomputer

• **Extreme Scale computing:** 100x more capable for the same power consumption and physical footprint
 - Exascale (10^{18} ops/cycle) datacenter: 20MW
 - Petascale (10^{15} ops/cycle) departmental server: 20KW
 - Terascale (10^{12} ops/cycle) portable device: 20W
Recap: How Did We Get Here?

- **Ideal Scaling** (or Dennard Scaling): Every semiconductor generation:
 - Dimension: 0.7
 - Area of transistor: $0.7 \times 0.7 = 0.49$
 - Supply Voltage V_{dd}, C: 0.7
 - Frequency: $1/0.7 = 1.4$

- **Real Scaling**: V_{dd} does not decrease much.
 - If too close to threshold voltage (V_{th}) \rightarrow slow transistor
 - Dynamic power density increases with smaller tech
 - Additionally: There is the static power

\[P_{dyn} \propto CV_{dd}^2 f \]

Constant dynamic power density

Power density increases rapidly
Design for E Efficiency from the Ground Up

- New designs for chips with 1K cores:
 - Efficient support for high concurrency
 - Data transfer minimization

- New technologies:
 - Low supply voltage (V_{dd}) operation
 - Efficient on-chip voltage regulation
 - 3D die stacking
 - Resistive memory
 - Photonic interconnects

Josep Torrellas
Extreme Scale Computing
Thrifty Multiprocessor

- Funded by DOE, DARPA, NSF, Intel
- Similar to *Runnemede* project funded by DARPA UHPC [HPCA2013]

1,000 core chip

Stacked DRAM

CPU module

Board

Cabinet

Josep Torrellas
Extreme Scale Computing
Low Voltage Operation

- V_{dd} reduction is the best lever for energy efficiency:
 - Big reduction in dynamic power; also reduction in static power
 - Reduce V_{dd} to bit higher than V_{th} (Near Threshold Voltage--NTV)
 - Corresponds to V_{dd} of about 0.5-0.55V rather than current 1V

- Advantages:
 - Potentially reduces power consumption by more than 40x

- Drawbacks as of now:
 - Lower speed (1/10)
 - Higher variation in gate delay and power consumption
Basics of Parameter Variation

- Deviation of device parameters from nominal values: eg Vth, Leff
Variation in the Thrifty Manycore

- Larger f variation at NTV
- Memories more vulnerable
- Power varies as much
Multiple Vdd Domains at NTV: Costly [HPCA13]

- On chip regulators have a high power loss (10+%)

- Large chip:
 - If coarse-grain (multiple-core) domains → already has variation inside the domain

- Small Vdd domain more susceptible to load variations
 - Larger Vdd droops → need increase Vdd guardband
Needed: Efficient On-Chip V_{dd} Regulation

- Voltage regulators (VRs) with a hierarchical design:
 - First level VRs: placed on a different die of 3D chip
 - Second level VRs: small range, high efficiency, fast (Low-dropout VRs)

From Nam Sung Kim, Univ. Wisconsin

- Energy-efficient design requires short V_{dd} guardbands
 - Need to tackle voltage droops due to load variation
Streamlined 1K-core Architecture

- Very simple cores (no structures for speculative execution)
- Cores organized in clusters with memory to exploit locality
- Each cluster is heterogeneous (has one large core)
- Special instructions for certain ops: fine-grain synch
- Exploring single address space without full hardware cache coherence
Managing Energy of On-Chip Memory

- On-chip memory leakage: major contributor of the NTV chip energy
- Industry is moving to dynamic memory for last-level caches
 - We propose Intelligent Refresh

- Use Intelligent Refresh
 - Do not refresh data that is not used \((\text{Reprint: HPCA-2013}) \)
 - Asymmetric refresh leveraging spatial variations \((\text{Mosaic: HPCA-2014}) \)
 - Asymmetric refresh leveraging temperature variations
Asymmetric Refresh Leveraging Spatial Variations

- Insight: retention time has **spatial correlation**. Why?
 - Retention time is a function of \(V_{th} \)
 - \(V_{th} \) has spatial correlation due to process variation

Loss of charge in cell depends on the \(V_{th} \) of access transistor
Mosaic: Organize the eDRAM in Tiles

- Organize eDRAM into tiles and profile the retention time
- Use different refresh rate per tile
- Eliminates 90+% of refresh
Managing Energy in On-Chip Network

• On-chip networks are especially vulnerable to variation:
 – They connect distant parts of the chip

• Proposal:
 – Organize network into multiple Vdd domains
 – Dynamically reduce Vdd of each domain differently while watching for errors
 – Each domain converges to a different Vdd
Motivation: Error Rate as Function of Vdd

- Process variation has a major impact on the network
Algorithm

- Independently change the Vdd for each domain
 - Periodically decrease Vdd of all domains
 - Use switch-to-switch CRC to detect errors in a router
 - On error: Controller increases Vdd of that domain

- Result for a 64-node mesh (1 router/domain):
 - Reduce the network energy consumption by avg. 35%
Minimizing Data Movement

- Thrifty has several techniques to minimize data movement:
 - Many-core chip organization based on clusters
 - Mechanisms to manage the cache hierarchy in software
 - Simple compute engines in the mem controllers → Processing in Memory (PIM)
 - Efficient synchronization mechanisms
Processing in Memory

Micron’s Hybrid Memory Cube (HMC)
- Memory chip with 4 or 8 DRAM dies over 1 logic die
- Logic die handles DRAM control

Future use of logic die:
- Support for Intelligent Memory Operations?
 - Preprocessing data as it is read from memory
 - Performing processor commands “in place”
Supporting Fine-Grain Parallelism

- Synchronization and communication primitives
 - Efficient point-to-point synch between two cores
 - Dynamic hierarchical hardware barriers
Programmability

- Programming highly-concurrent machines has required heroic efforts
- Extreme-scale architectures, with emphasis on power-efficiency, may make it worse
 - Need carefully manage locality and minimize communication
How to Program for High Parallelism?

- Expert programmers
 - Hooks to manage power and Vdd/frequency
 - Ability to map and control tasks

- Novice programmers:
 - High level programming models that express locality
 - Hierarchical Tiled Arrays (HTA): computes in recursive blocks
 - Concurrent Collections (CnC): computes in a dataflow manner

- Autotuning?

- … open problem
Conclusion

• Presented the challenges of Extreme Scale Computing:
 • Designing computers for energy efficiency from the ground up
 • Lots of ideas being tried (self-aware run-time systems…)
 • Programmability will certainly suffer
 • We will have more dynamic machines that change “under the covers”
Extreme Scale Computer Architecture: Energy Efficiency from the Ground Up

Josep Torrellas
Department of Computer Science
University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu

ASBD
June 2014