
1 
  

TimeThief: Leveraging Network Variability to Save Datacenter 

Energy in On-line Data-Intensive Applications 
      Balajee Vamanan               Hamza Bin Sohail                      Jahangir Hasan                      T. N. Vijaykumar 

     Purdue University               Purdue University                         Google Inc.                         Purdue University 

bvamanan@ecn.purdue.edu    hsohail@ecn.purdue.edu         jahangir@google.com           vijay@ecn.purdue.edu

Abstract 

Datacenters running on-line, data-intensive applications 

(OLDIs) consume significant amounts of energy. However, 

reducing their energy is challenging due to their tight 

response time requirements. A key aspect of OLDIs is that 

each user query goes to all or many of the nodes in the cluster, 

so that the overall time budget is dictated by the tail of the 

replies’ latency distribution. Previous work proposes to 

achieve load-proportional energy by slowing down the 

computation at lower datacenter loads based directly on 

response times (i.e., at lower loads, the proposal exploits the 

average slack in the time budget provisioned for the peak 

load). In contrast, we propose TimeThief to reduce energy by 

exploiting the latency slack in the sub-critical replies which 

arrive before the deadline (e.g., 80% of replies are 3-4x faster 

than the tail).  This slack is present at all loads. While the 

previous work shifts the leaves’ response time distribution to 

consume the slack at lower loads, TimeThief reshapes the 

distribution at all loads by slowing down individual sub-

critical nodes without increasing missed deadlines. 

Specifically, TimeThief exploits the slack in the network 

budget. Further, TimeThief leverages Earliest Deadline First 

scheduling to largely decouple critical requests from the 

queuing delays of sub-critical requests which can then be 

slowed down without hurting critical requests. Using at-scale 

simulations, we show that without adding to missed 

deadlines, TimeThief saves 12% and 20% energy at 90% and 

30% loading, respectively, in a datacenter with 512 nodes.  

1 Introduction 
Datacenters host many of modern Internet services today 

such as Web Search, social networking, e-commerce, and 

cloud computing.  Datacenters consume tens of megawatts of 

electric power [8], which accounts for millions of dollars in 

annual operating costs [30]. Of their total power, modern 

datacenters spend about 10% on cooling and power 

distribution overheads (their Power Usage Effectiveness is 

1.12 [15]) and about 5% on networking equipment, leaving 

about 85% for servers of which memory and disk take up 

45% and processors consume 55% (i.e., 47% of total) [8, 15, 

23]. TimeThief focuses on the substantial processor power.  

Many of Internet services are provided by on-line, data-

intensive applications (OLDIs) which often process vast 

amounts of Internet data (e.g., Web Search and Key-Value 

stores) [25]. Such services typically operate under tight 

response time budgets set by service-level agreements 

(SLAs) (e.g., 200 ms for a Web Search query) [16]. 

Processing of a query often involves hundreds or thousands 

of servers working in parallel on memory-resident data [7, 

11]. OLDIs have two distinguishing characteristics. (1) They 

employ a multi-level tree-like software architecture where 

each query goes to all or many leaves. Consequently, though 

only a few leaves’ replies are slow, the overall   SLA budget 

is  dictated by the tail of the leaves’ reply latency distribution 

[11] (e.g., the 99.9th percentile leaf latency in a 1000-leaf 

tree). Replies arriving after the deadline are dropped for 

responsiveness. (2) The network contributes to significant 

variability in the latency of the leaves’ replies, as we explain 

in Section 2 (e.g., a request or reply takes 2-30 ms in the 

network [5, 37, 38]). Network variations occur at all 

datacenter loads though the spread is greater at higher loads.  

Using low-power or sleep modes is a common approach to 

saving energy. Unfortunately, OLDIs’ time budgets and 

inter-arrival times are too short for the transition latencies of 

low-power modes [24, 25]. As such, the low-power modes 

would incur many deadline violations [23]. Alternately, an 

insightful recent work, called Pegasus [23], achieves load-

proportional energy by slowing down the leaf computation at 

lower datacenter loads while carefully ensuring that SLAs are 

not violated (e.g., at night times [25]).   Pegasus exploits the 

mean slack at lower loads in the time budget provisioned for 

the peak load.   

In contrast, we propose TimeThief to reduce energy by 

exploiting sub-critical leaves’ latency slack (e.g., 80% of 

leaves in every query complete within a 3rd-4th of the budget.). 

This slack is present at all loads (modern datacenters operate 

at high loads during the day [25]). Pegasus exploits the mean 

load-related slack, common to all leaves at lower loads, to 

shift the response time distribution. Instead, TimeThief 

reshapes the response time distribution at all loads by 

slowing down individual sub-critical leaves so that they are 

closer to, but within, the deadline than the default 

distribution. Specifically, TimeThief exploits the slack in the 

network budget. TimeThief achieves significant savings even 

at the peak load, which occurs often and where Pegasus has 

no opportunity. Thus, TimeThief converts the performance 

disadvantage of latency tails [11] into an energy advantage.  

TimeThief employs two ideas. First, TimeThief trades time 

across system layers, borrowing from the network layer and 

lending to the compute layer. Each query results in a request-

compute-reply-aggregate sequence where the requests from 

parents to the leaves and replies from the leaves to their 

parents see variability in the network.  OLDIs break up the 

total time budget into a component each for request, compute, 

 



2 
  

reply, and aggregate. We make the key observation that 

because request comes before compute, the slack in faster 

requests can be transferred to their corresponding compute 

without any prediction or risk of missing the deadline. Unlike 

request, unfortunately, reply comes after compute and reply 

latency is unpredictable due to the highly-timing-dependent 

nature of network latencies (Section 2). Therefore, the slack 

in faster replies cannot be transferred easily to their compute. 

As such, TimeThief exploits the request but not the reply 

slack.  

Second, despite the slack, such slowing down is challenging 

in the presence of long tails and SLA guarantees.  Even 

though a sub-critical request has slack, slowing it down may 

hurt another, critical request that is queued behind the sub-

critical request. To address this issue, we leverage the well-

known idea of Earliest Deadline First (EDF) scheduling [22] 

to decouple critical requests from the queuing delays of sub-

critical requests by placing the former ahead of the latter in 

the leaf servers’ queues. Conventional implementations and 

Pegasus cannot exploit EDF because they do not distinguish 

between critical and sub-critical requests. Due to its 

decoupling, EDF pulls in the tail and reshapes the leaves’ 

response time distribution (without improving the mean), 

enabling TimeThief to use the per-leaf slack to shift further 

the distribution closer to the deadline than with network slack 

alone. Though this shift lengthens the mean service time, 

such an increase does not worsen throughput. Because 

OLDIs’ response times are sensitive to tail latencies, 

compute-queuing delays are kept low even at high loads via 

high throughput-parallelism (i.e., there is compute-

throughput slack even at high loads). As such, TimeThief’s 

longer service times tap into this throughput slack without 

causing loss of throughput.  

Finally, TimeThief employs two key mechanisms to realize 

the above ideas. Transferring the request slack from the 

network to the compute is challenging due to lack of fine-

grained (sub-ms) synchronization between a parent and the 

leaves. To address this issue, we leverage the well-known 

Explicit Congestion Notification (ECN) in IP [32] and TCP 

timeouts to inform the leaves whether a request encountered 

timeout or congestion in the network and hence does not have 

slack. Further, because the slack lengths are tens of 

milliseconds, we use power management schemes with 

response times of 1 ms, similar to Pegasus (e.g., Running 

Average Power Limit (RAPL) [1]).  

In summary, the paper’s contributions are: 

 TimeThief reshapes the response time distribution at all 

loads by slowing down individual sub-critical leaves 

without increasing SLA violations;  

 TimeThief exploits the request (network) slack on a per-

leaf, per-query basis;  

 TimeThief leverages EDF to largely decouple critical 

requests from the slowing down of sub-critical requests; 

and  

 TimeThief leverages (a) network signals such as TCP 

timeouts and ECN to circumvent the lack of fine-grained 

synchronization between parent and leaves and (b) 

modern, low-latency power management to fit within 

OLDI timescales.  

Using at-scale simulations, we show that without adding to 

missed deadlines TimeThief saves about 12% and 20% 

energy at 90% and 30% loading, respectively, in a datacenter 

with 512 nodes. 

2 Background 
As discussed, OLDIs typically employ a tree-based software 

architecture where the data to be queried resides in the leaf 

nodes’ memory for fast access [7, 11] (see Figure 1). For 

instance, in Web Search and Key-Value store, the search 

index and the key-value pairs are partitioned across the leaves 

in a well load-balanced manner (e.g., using good hashing).  In 

Web Search, every query is broadcast to all the leaves whose 

results are aggregated based on some ranking scheme (e.g., 

Google’s PageRank). Typical use of key-value stores involve 

looking up several keys, so that each top-level request 

generates lookups in several hundreds of leaves, as noted in 

[23] (e.g., a user’s Facebook page typically comprises of 

several hundreds of objects).  

Each query involves a request-compute-reply-aggregate 

sequence where the query generates requests to the leaves 

going through multiple levels in the tree (see Figure 1); each 

leaf looks up its memory to compute its result and sends a 

reply to its parent which often aggregates the replies from all 

the children and sends the aggregated result up the tree 

potentially involving aggregations on the way to the root 

which sends the overall response. The key point here is that 

each query needs to wait for the replies from either all the 

leaves (Web Search) or several hundreds of leaves (Key-

value stores).  Consequently, the overall response time of a 

query is affected by the slowest leaf so that the mean overall 

response time, and therefore the SLA budget, includes the 

99th - 99.9th percentile leaf latency in a 1000-node cluster, 

known as the latency tail problem [11]. To maintain 

interactive user experience, the parents wait for replies only 

until the deadline and drop the replies that miss the deadline. 

Because the dropped replies affect response quality and 

revenue, OLDIs keep the fraction of missed deadlines low 

(e.g., 1%). 

 

 

 

 

 

 

 

 

Figure 1: OLDI software architecture 

Root 

Aggregator n Aggregator 1 

… 

…
. Leaf 1 Leaf 2 Leaf n 

…
. Leaf 1 Leaf 2 Leaf n 

Response 

Request 



3 
  

There is a wide variation in the leaves’ reply latency due to 

variations in network and compute; as noted before, this 

variation is among the sub-queries within a query, not across 

queries. Requests from parents to leaves (and responses) may 

take varying time due to collisions at the packet buffers with 

the leaves’ replies for multiple queries. Due to the tree-like 

software architecture and mostly balanced workload among 

the leaves, the leaves send their replies to the parent at about 

the same time; this phenomenon is called in-cast [5, 37, 38]. 

Because all the replies are destined for the same input port of 

the same node (parent), the replies are queued in the same 

packer buffer at the relevant datacenter network switch. 

Because in-casts are inevitable, the switches are provisioned 

with enough buffering to handle a few in-casts. However, the 

buffers are kept shallow for cost and latency reasons [5]. 

Therefore, multiple queries’ in-casts occurring at about the 

same time and colliding at the buffers result in delays and 

buffer overflows; multiple queries are processed in parallel 

for high throughput. Further, there are also background flows 

from other applications on the cluster due to consolidation or 

to updating the OLDI data (e.g., Web index). Such collisions 

cause TCP time-outs and re-transmits resulting in the replies 

falling in the tail or exceeding the time budget. While such 

collisions are uncommon in general, they are common 

enough to affect the 90th-99.9th percentile latencies (e.g., in 

every query, 80% of replies incur 5 ms latency whereas the 

last 1% incur 20 ms). Further, such collisions are highly 

timing-dependent and therefore are highly unpredictable; the 

TCP-flow propagation delay for a leaf to realize that a 

collision has occurred is too long for the leaf to delay or slow 

down its sending rates (hence reactive schemes are unlikely 

to work).  

3 TimeThief 
Recall from Section 1 that TimeThief exploits the network 

slack in requests. TimeThief slows down the individual, sub-

critical leaves, to save energy without increasing SLA 

violations. To ensure that slowing down sub-critical requests 

does not hurt the critical requests that are queued behind the 

sub-critical requests, TimeThief employs Earliest Deadline 

First (EDF) scheduling [22] that prioritizes the critical 

requests ahead of the sub-critical requests. 

3.1 Request slack 

Requests that arrive before their budgeted deadlines have 

slack which TimeThief transfers to compute. Fortunately, 

because request comes before compute, this slack can be 

identified without prediction or the risk of missing the 

deadlines (recall from Section 2 that predicting network 

latencies is hard). However, requests originate at the parent 

node and compute occurs at a leaf, making it hard to 

accurately estimate the slack. Unfortunately, clock skew of 

several milliseconds between the parent and the leaf nearly 

rules out estimating slacks of similar magnitudes. Inter-node 

synchronization at such fine time granularity is hard [26, 28].  

Instead of attempting to precisely determine the request slack, 

we use signals from the network about the presence or 

absence of packet drop and of imminent network congestion 

(typically due to an in-cast collision, as described in Section 

2). Presence of these signals could mean no slack due to 

delays in the network whereas absence confirms some slack.  

While there may still be some slack even in the former case, 

we conservatively assume there is none. Because congestion 

is uncommon in datacenters that host OLDIs, our 

conservative assumption does not degrade our savings.  

Determining the exact slack amount involves two cases: 

packet drop and imminent congestion. The former case 

results in retransmission which is marked by the sender 

(parent) with a packet header bit. The latter case of imminent 

congestion is signaled by Explicit Congestion Notification 

(ECN) [32]. Network switches detect imminent congestion 

when packet buffers are occupied above certain watermarks 

signifying queuing delays, and use ECN bits in packet 

headers to pass this information. Thus, the leaf can determine 

if there was packet drop and/or imminent congestion by 

looking at the packet header. If the entire request did not 

encounter packet drop or imminent congestion, we set the 

request slack to be request budget – median network latency. 

However, in the presence of either packet drop or imminent 

congestion, we conservatively assume zero slack. 

However, this request slack has to be attenuated (i.e., scaled) 

before being applied as a slowdown to account for the fact 

that slower computation affects all the queued requests and 

not just the current request.  One other subtle issue is that 

going to a lower power setting in CPUs requires choosing a 

slowdown factor. While we know the total slack amount, we 

do not know how long the current request will take and 

therefore, we cannot compute a slowdown factor. 

Fortunately, both these issues – attenuation and unknown 

service time – can be addressed by observing that the budget 

accounts for worst-case queuing delays and worst-case 

service times. Further, some slack is spent in RAPL latency. 

Therefore, we set   

slowdown =(request slack – RAPLlatency)*scale/budget 

where scale is a factor to further moderate the slowdown. 

Scale depends on both load and applications (i.e., service 

time distributions and budgets). Higher load implies lower 

value for scale to reduce the slowdown factor and impact on 

throughput. Instead of using statically configured scale 

values for each application, we employ a simple control 

algorithm that dynamically determines scale. . The algorithm 

monitors the difference between request+compute times of 

completed queries and the request+compute budget at each 

leaf server every 5 seconds. While the compute time is known 

for completed queries, the request time is not and therefore, 

we conservatively assume the full request budget or median 

network latency depending on ECN or timeout marks. If the 

difference is more than 5% of the budget, we increase scale 

by 0.05. Else, we reduce scale by 0.05 until there is room or 

the scale is 0. Thus, there is a guard band of 5% to avoid SLA 

violations. Even at the peak load, there is room to exploit. 

However, Pegasus cannot exploit this room because it does 

not distinguish critical requests from sub-critical requests, at 

the same leaf server. TimeThief saves energy even at the peak 



4 
  

load by slowing down sub-critical requests using a non-zero 

scale value without directly affecting critical requests that 

have 0 total slack (scale does not matter). Further, EDF 

shields critical requests from the queuing effects that arise 

from the slowing down of sub-critical requests. Thus, by 

using per-request slack and EDF, TimeThief saves energy at 

all load. We use scale values of 0.7, 0.4, and 0.2 for 30%, 

60%, and 90% utilization respectively. 

To set the core’s speed as per the slowdown factor, we 

employ RAPL [1], which requires less than 1 ms, making it 

suitable for OLDI timescales. RAPL allows per-core power 

control (e.g., Intel’s Enhanced Speed Step). One issue is that 

modern processors employ Simultaneous Multithreading 

(SMT) [36] where the slack for each SMT context may be 

different. We conservatively use the worst of the contexts’ 

individual slowdown factors to avoid violating deadlines.  

Because the number of SMT contexts per core is only a few 

(e.g., 2-8), this conservative assumption does not diminish 

our opportunity. More SMT contexts may improve 

throughput but worsen single-thread latency which is key for 

OLDIs.  

When we explored slowing down main memory in addition 

to the CPU, the fact that memory is shared among all the 

cores of a server severely limits the memory slowdown factor 

in the presence of such a conservative assumption. For 

instance, for a 32-core server, the memory slowdown factor 

would have to be the worst among all the 32 cores’ factors, 

which would likely be zero. Therefore, we slow down only 

the cores and not memory. Nonetheless, because CPUs 

contributes about 60% of server power [8], our opportunity 

remains significant.  

3.2 Deadline-based compute-queuing 

Recall from Section 1 that the presence of slack is not 

sufficient to guarantee avoiding missing of the deadlines. 

Slowing down a sub-critical request which has slack may hurt 

another critical request that is queued behind the sub-critical 

request.  To address this issue, we exploit Earliest Deadline 

First (EDF) scheduling that decouples critical requests from 

the queuing delays of sub-critical requests by placing the 

former ahead of the latter in the leaf server’s queues.  

The decoupling is not perfect due to the fact that arriving 

critical requests may still see elongated, residual service 

times of sub-critical requests in the absence of pre-emption 

(whose delays would not be suitable in our context of tight 

deadlines).  Nevertheless, the decoupling enables EDF to pull 

in the tail and to reshape the leaves’ response time 

distribution; the mean response time does not improve 

because as critical requests’ response times get shorter the 

sub-critical requests’ times get longer. However, EDF 

enables TimeThief to use per-leaf slack to slow down sub-

critical requests, thereby further shifting the distribution 

closer to the deadline. Though such slow down lengthens the 

mean service time, such an increase taps into the throughput 

slack, and hence does not worsen throughput. Still, the 

throughput slack may not be enough to exploit the full total 

slack in which case we give up some energy savings to avoid 

throughput loss.  

In our implementation, we timestamp the requests as they 

arrive at the leaf server and compute their deadlines before 

queuing them in a task queue implemented as a priority 

queue. Worker threads process the requests in the priority 

order. 

4 Methodology 
TimeThief involves two aspects: network latency and 

compute power. We use real-system measurements for 

compute power, and at-scale simulations for network latency. 

The compute aspects involve only one server because over 

long periods of time all servers are statistically identical in 

response times and power consumption and hence real-

system measurements are feasible. Further, because tail 

effects are more pronounced in large clusters (e.g., 1000 

node) to which we do not have access, we rely on simulations 

to study the network aspect.  

Benchmarks: We simulate an OLDI benchmark, Web Search 

(Search), from CloudSuite 2.0 We generate Search’s index 

from Wikipedia. In our runs, Search supports peak queries-

per-second rates of 3000 using 100 threads per leaf server at 

90% utilization (corresponding to a modern server with 4 

sockets, 12 cores per-socket, and 2 SMT contexts per core).  

We use a parent-to-leaf fan-out of 32 (a standard value). For 

each query, we randomly choose a node to be the parent 

(Section 2). We set the budgets as:  total 200 ms, request 25 

ms, reply 25 ms, leaf compute 75 ms (Web Search), and 

aggregate and remaining network (aggregate-root 

communication) 75 ms. The network and compute budgets 

are the 99th percentile latencies achieved by, respectively, our 

network using D2TCP and compute nodes at the peak load. 

We target less than 1% missed deadlines (i.e., these deadlines 

are tight and do not offer any “easy” opportunity for 

TimeThief). The network and compute budgets are in line 

with [5, 37, 38] and [34], respectively. TimeThief focuses on 

request, compute and reply for a total of 125 ms (Web Search) 

which is the deadline in our experiments. We use request 

sizes of 2 KB and  reply sizes of 16-64 KB chosen uniformly 

randomly, and background flow sizes of 1 and 10 MB chosen 

uniformly randomly (Section 2); the total traffic is split 

evenly between OLDI and background flows. These message 

characteristics match publicly-available distributions from 

production OLDIs [9]. In all our experiments, the network 

utilization is 20% which is realistic for datacenters [5] (i.e., 

the network is over-provisioned and yet incurs in-cast 

collisions).  

Network latency: Using ns-3 [3], a widely-used simulator, 

we simulate a fat-tree topology which is typical of datacenter 

networks [4]. There are 64 racks with each rack having up to 

16 servers (i.e., a 1000-server cluster).  Each server connects 

to the top-of-rack (ToR) switch via a 10 Gbps link. Going up 

from the ToR level, there is a bandwidth over-subscription of 

2x at each level, as is typical [4]. We sized the packet buffers 

in the ToR switches to match typical buffer sizes of shallow-

buffered switches in real data centers (4MB) [5]. We set the 



5 
  

link latencies to 20 µs, achieving an average of round-trip 

time (RTT) of 200 µs, which is representative of datacenter 

network RTTs. To reduce the effects of in-cast collisions, we 

add a 1-ms jitter to each leaf’s reply [14].  

To simulate a deadline-aware TCP implementation that 

exploits the separate request-reply budgets (Section 2.3), we 

use D2TCP [37] on top of ns-3's TCP New Reno protocol [2]. 

(Code obtained from D2TCP’s authors). All D2TCP 

parameters (e.g., deadline imminence factor) match those in 

[37] and are available with the code. We set RTOmin for all 

the protocols to be 20 ms.  We use the same separate request-

reply budgets and D2TCP in both the baseline (no power 

management) as well as TimeThief. The latencies we observe 

closely match those reported in other papers, including 

production runs [37]. 

All together:  In ns-3, we simulate TimeThief’s EDF 

scheduling (Section 3.2) and compute the total slack as a 

function of the request. We compute the per-query slowdown 

factor based on the total slack. Using these slowdown factors 

and our power-latency measurements, we compute 

TimeThief’s energy savings. 

5 At-scale simulation results 
Now we show our at-scale results. We start with comparing 

the energy savings of TimeThief over the baseline, the main 

result of the paper. We then show a binning of requests based 

on their CPU core’s power state for TimeThief.  

5.1  Energy savings 

 
Figure 2: At-scale CPU energy savings 

Figure 2 compares the energy savings of TimeThief over a 

baseline cluster without power management. The Y axis 

shows the total energy savings (including idle) and the X axis 

shows the benchmarks running at 90% (peak), 60%, and 30% 

load. In all the three systems, less than 1% of queries exceed 

the 125-ms (search) request-compute-reply budgets (i.e., 

they all meet our target of less than 1% missed deadlines).  

TimeThief achieves significant savings both at low as well as 

high loads. For instance, at 90% and 30% loads, TimeThief 

achieves about 12% and 20% energy savings over the 

baselines, respectively. By slowing down, TimeThief saves 

both active and idle energy. As the load decreases, idle power 

savings increase, as expected. Further, TimeThief saves 

about 12% energy at the peak load during which the power 

consumption is more than twice than that during 30% load (it 

is misleading to compare the savings percentages at different 

loads which correspond to different amounts of power 

consumption). Because datacenter loads are moderate to high 

during half the day (diurnal pattern), TimeThief’s savings are 

significantly higher than Pegasus’s which saves 0% energy at 

peak load (not shown).  

5.2 Power states 

 
Figure 3: Power-state distribution 

To understand TimeThief’s energy savings, we bin the 

requests based on the CPU core’s power state for each 

request. Each power state corresponds to a core clock speed 

which is scaled based on the request’s slowdown factor. 

Figure 3 shows the fraction of requests in each bin for at 90% 

(peak) and 30% loads. The bins span 1.2 GHz to 2.5 GHz. 

We see from Figure 3 that TimeThief even at 90% load slows 

down 85% of the requests by 20% or more which corresponds 

to the second-slowest state (1.5 GHz). As the load decreases 

to 30% and the slack increases, TimeThief uses the slowest 

state for many requests (20%) and saves more energy.  

6 Conclusion 
We proposed TimeThief to reduce energy by exploiting sub-

critical replies’ latency slack. While previous work shifts the 

leaves’ response time distribution to consume the slack at 

lower loads, TimeThief reshapes the distribution at all loads 

by slowing down individual sub-critical nodes without 

increasing missed deadlines. TimeThief exploits slack in the 

network budget. Further, TimeThief leverages Earliest 

Deadline First scheduling to decouple critical requests from 

the queuing delays of sub-critical requests which can then be 

slowed down without hurting critical requests. Using at-scale 

simulations, we showed that without adding to missed 

deadlines, TimeThief saves 12% and 20% energy at 90% and 

30% loading, respectively, in a datacenter with 512 nodes. 

 

 

 

 

0%

5%

10%

15%

20%

25%

90% 60% 30%

Web search

E
n

e
rg

y
 s

a
v
in

g
s

 o
v

e
r 

b
a

s
e
li

n
e

Idle Active

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

90% 30%

Web search
P

e
rc

e
n

t 
p

o
f 

re
q

u
e

s
ts

1.2 GHz 1.5 GHz 1.8 GHz

2.2 GHz 2.5 GHZ



6 
  

References 
1. Intel® 64 and IA-32 Architectures Software Developer Manuals Systems 

Programming Guide, part 2, 2013. 

2. Iperf - The TCP/UDP Bandwidth Measurement Tool https://iperf.fr/. 

3. The ns-3 discrete-event network simulator, http://www.nsnam.org/. 

4. Al-Fares, M., Loukissas, A. and Vahdat, A. A scalable, commodity data 

center network architecture Proceedings of the ACM SIGCOMM 2008 

conference on Data communication, ACM, Seattle, WA, USA, 2008. 

5. Alizadeh, M., Greenberg, A., Maltz, D.A., Padhye, J., Patel, P., Prabhakar, 

B., Sengupta, S. and Sridharan, M. Data center TCP (DCTCP) 

Proceedings of the ACM SIGCOMM 2010 conference, ACM, New Delhi, 

India, 2010. 

6. Aydin, H., Melhem, R., Moss, D., Mej, P. and a, A. Power-Aware 

Scheduling for Periodic Real-Time Tasks. IEEE Trans. Comput., 53 (5). 

584-600. 

7. Barroso, L.A., Dean, J. and Holzle, U. Web Search for a Planet: The 

Google Cluster Architecture. IEEE Micro, 23 (2). 22-28. 

8. Barroso, L.A. and Hölzle, U. The Datacenter as a Computer: An 

Introduction to the Design of Warehouse-Scale Machines. Morgan and 

Claypool, 2009. 

9. Benson, T., Akella, A. and Maltz, D.A. Network traffic characteristics of 

data centers in the wild Proceedings of the 10th ACM SIGCOMM 

conference on Internet measurement, ACM, Melbourne, Australia, 2010. 

10. Chen, Y., Alspaugh, S., Borthakur, D. and Katz, R. Energy efficiency for 

large-scale MapReduce workloads with significant interactive analysis 

Proceedings of the 7th ACM european conference on Computer Systems, 

ACM, Bern, Switzerland, 2012. 

11. Dean, J. and Barroso, L.A. The tail at scale. Commun. ACM, 56 (2). 74-80. 

12. Delimitrou, C. and Kozyrakis, C. Paragon: QoS-aware scheduling for 

heterogeneous datacenters Proceedings of the eighteenth international 

conference on Architectural support for programming languages and 

operating systems, ACM, Houston, Texas, USA, 2013. 

13. Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Alisafaee, M., Jevdjic, 

D., Kaynak, C., Popescu, A.D., Ailamaki, A. and Falsafi, B. Clearing the 

clouds: a study of emerging scale-out workloads on modern hardware 

Proceedings of the seventeenth international conference on Architectural 

Support for Programming Languages and Operating Systems, ACM, 

London, England, UK, 2012. 

14. Floyd, S. and Jacobson, V. The synchronization of periodic routing 

messages Conference proceedings on Communications architectures, 

protocols and applications, ACM, San Francisco, California, USA, 1993. 

15. Google. Efficiency: How we do it 

http://www.google.com/about/datacenters/efficiency/internal/. 

16. Hoff, T. Latency is Everywhere and it Costs You Sales - How to Crush it 

http://highscalability.com/blog/2009/7/25/latency-iseverywhere-and-it-

costs-you-sales-how-to-crush-it.html., 2009. 

17. Isci, C., Buyuktosunoglu, A., Cher, C.-Y., Bose, P. and Martonosi, M. An 

Analysis of Efficient Multi-Core Global Power Management Policies: 

Maximizing Performance for a Given Power Budget Proceedings of the 

39th Annual IEEE/ACM International Symposium on Microarchitecture, 

IEEE Computer Society, 2006. 

18. Kleinrock, L. Theory, Volume 1, Queueing Systems. Wiley-Interscience, 

1975. 

19. Lang, W. and Patel, J.M. Energy management for MapReduce clusters. 

Proc. VLDB Endow., 3 (1-2). 129-139. 

20. Lee, J. and Kim, N.S. Optimizing throughput of power- and thermal-

constrained multicore processors using DVFS and per-core power-gating 

Proceedings of the 46th Annual Design Automation Conference, ACM, 

San Francisco, California, 2009. 

21. Lin, C. and Brandt, S.A. Improving Soft Real-Time Performance through 

Better Slack Reclaiming Proceedings of the 26th IEEE International Real-

Time Systems Symposium, IEEE Computer Society, 2005. 

22. Liu, C.L. and Layland, J.W. Scheduling Algorithms for 

Multiprogramming in a Hard-Real-Time Environment. J. ACM, 20 (1). 46-

61. 

23. Lo, D., Cheng, L., Govindaraju , R., Barroso, L.A. and Kozyrakis, C. 

Towards Energy Proportionality for Large-Scale Latency-Critical 

Workloads The 41th Annual International Symposium on Computer 

Architecture, Minnesota, MN, 2014, 301-312. 

24. Meisner, D., Gold, B.T. and Wenisch, T.F. PowerNap: eliminating server 

idle power Proceedings of the 14th international conference on 

Architectural support for programming languages and operating systems, 

ACM, Washington, DC, USA, 2009. 

25. Meisner, D., Sadler, C.M., Andr, L., Barroso, Weber, W.-D. and Wenisch, 

T.F. Power management of online data-intensive services Proceedings of 

the 38th annual international symposium on Computer architecture, 

ACM, San Jose, California, USA, 2011. 

26. Moon, S.B., Skelly, P. and Towsley, D., Estimation and removal of clock 

skew from network delay measurements. in INFOCOM '99. Eighteenth 

Annual Joint Conference of the IEEE Computer and Communications 

Societies. Proceedings. IEEE, (1999), 227-234. 

27. Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H.C., 

McElroy, R., Paleczny, M., Peek, D., Saab, P., Stafford, D., Tung, T. and 

Venkataramani, V. Scaling Memcache at Facebook Proceedings of the 

10th USENIX conference on Networked Systems Design and 

Implementation, USENIX Association, Lombard, IL, 2013. 

28. Paxson, V. On calibrating measurements of packet transit times 

Proceedings of the 1998 ACM SIGMETRICS joint international 

conference on Measurement and modeling of computer systems, ACM, 

Madison, Wisconsin, USA, 1998. 

29. Pillai, P. and Shin, K.G. Real-time dynamic voltage scaling for low-power 

embedded operating systems Proceedings of the eighteenth ACM 

symposium on Operating systems principles, ACM, Banff, Alberta, 

Canada, 2001. 

30. Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z. and Zhu, X. No 

"power" struggles: coordinated multi-level power management for the data 

center Proceedings of the 13th international conference on Architectural 

support for programming languages and operating systems, ACM, Seattle, 

WA, USA, 2008. 

31. Rajamani, K., Rawson, F., Ware, M., Hanson, H., Carter, J., Rosedahl, T., 

Geissler, A., Silva, G. and Hua, H. Power-performance management on an 

IBM POWER7 server Proceedings of the 16th ACM/IEEE international 

symposium on Low power electronics and design, ACM, Austin, Texas, 

USA, 2010. 

32. Ramakrishnan, K., Floyd, S. and Black, D. The Addition of Explicit 

Congestion Notification (ECN) to IP. RFC Editor, 2001. 

33. Ranganathan, P., Leech, P., Irwin, D. and Chase, J. Ensemble-level Power 

Management for Dense Blade Servers Proceedings of the 33rd annual 

international symposium on Computer Architecture, IEEE Computer 

Society, 2006. 

34. Ren, S., He, Y. and McKinley, K. A Theoretical Foundation for 

Scheduling and Designing Heterogeneous Processors for Interactive 

Applications the 11th International Conference on Autonomic Computing 

(ICAC 14), USENIX Association, Philadelphia, PA, 2014. 

35. Sharma, N., Barker, S., Irwin, D. and Shenoy, P. Blink: managing server 

clusters on intermittent power Proceedings of the sixteenth international 

conference on Architectural support for programming languages and 

operating systems, ACM, Newport Beach, California, USA, 2011. 

36. Tullsen, D.M., Eggers, S.J. and Levy, H.M. Simultaneous multithreading: 

maximizing on-chip parallelism Proceedings of the 22nd annual 

international symposium on Computer architecture, ACM, S. Margherita 

Ligure, Italy, 1995. 

37. Vamanan, B., Hasan, J. and Vijaykumar, T.N. Deadline-aware datacenter 

tcp (D2TCP) Proceedings of the ACM SIGCOMM 2012 conference on 

Applications, technologies, architectures, and protocols for computer 

communication, ACM, Helsinki, Finland, 2012. 

38. Wilson, C., Ballani, H., Karagiannis, T. and Rowtron, A. Better never than 

late: meeting deadlines in datacenter networks Proceedings of the ACM 

SIGCOMM 2011 conference, ACM, Toronto, Ontario, Canada, 2011. 

39. Yang, H., Breslow, A., Mars, J. and Tang, L. Bubble-flux: precise online 

QoS management for increased utilization in warehouse scale computers 

Proceedings of the 40th Annual International Symposium on Computer 

Architecture, ACM, Tel-Aviv, Israel, 2013. 

 

http://www.nsnam.org/
http://www.google.com/about/datacenters/efficiency/internal/
http://highscalability.com/blog/2009/7/25/latency-iseverywhere-and-it-costs-you-sales-how-to-crush-it.html.
http://highscalability.com/blog/2009/7/25/latency-iseverywhere-and-it-costs-you-sales-how-to-crush-it.html.

