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Abstract
For the past few decades, solid state disks (SSDs) sig-
nificantly revamped their internal system architecture
by employing more compute resources, multiple data
channels, and tens or hundreds of non-volatile mem-
ory (NVM) packages. These ample internal resources in
turn enable modern SSDs to accelerate near data pro-
cessing. While the prior simulation-based work uncov-
ered potential benefits of offloading the computation from
a host to the SSDs, their analytical models make sev-
eral assumptions that ignore not only detailed system
parameters ranging from different micro-architectures
through varying number of cores to deep memory hierar-
chy, but also a wide spectrum of device parameters such
as emerging NVM technologies in SSDs. In this work, we
propose a novel hardware/software co-design emulation
platform, which not only offers flexible/scalable design
space that can employ a broad range of SSD controller
and firmware policies, but also capture the details of en-
tire software/hardware stacks for SSD-accelerated near
data processing. Our comprehensive evaluation results
show that the near-data processing bandwidth of twenty
different kernel functions we implemented can be as high
as 2 GB/sec.

1 Introduction

Modern computing environments have more data to pro-
cess than they have ever had before, and the volume of
such data is expected to be immensely growing. This
data explosion renders the systems difficult to process
data on the existing memory hierarchy. From a stor-
age system perspective, the root cause of this pitfall is
that most data processing applications are disconnected
from the underlying data warehouse systems. Specifi-
cally, a traditional CPU needs to pull a large amount of
data from the storage systems (over a network or a thin-
interface connection) and construct them as a recogniz-
able data structure on their working memories [5]. Af-
ter processing the data, the CPU needs to store/update
results/interim-outputs back to the data storage media.
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Figure 1: An illustrative comparison between conven-
tional analytical models and our evaluation platform for
near data processing.

This pull-and-push big-data processing model wastes
tremendous network throughput and introduces poor sys-
tem power/energy consumption behaviors. One promis-
ing solution to address these overheads is to offload the
actual compute kernel functions from the host to the un-
derlying solid state disks (SSDs), so that they internally
process data without occupying external networks.

Over the last decade, SSDs significantly revamped
their internal system architecture in order to improve the
overall system bandwidth as well as increase their stor-
age capacity. Specifically, modern SSDs employ tens or
hundreds of non-volatile memory (NVM) packages over
the multiple channels/buses, which in turn allow them
to take advantage of massive device-level parallelisms.
In parallel, SSDs equip multiple-core processors to ef-
ficiently parallelize data accesses across their many in-
ternal NVM resources. Thanks to these numerous ar-
chitectural improvements, many prior studies are able to
integrate the active storage concept [7] to modern SSDs,
which can offload the host-side compute tasks to the stor-
age devices. For example, [11] proposed a performance
and energy model of active computation on the SSDs,
which is used for reducing the data movement costs in
scientific applications. Similarly, [2][3] introduced an
intelligent SSD approach that performs the MapReduce



framework to accelerate big-data analysis.
Even though the prior simulation-based work studied

the potential benefits of unloading the host-side com-
putation to SSDs, their analytical models are unfortu-
nately limited to explore a full design space of future
near data processing. As shown in Figure 1a, their
simulation-based studies rely on analytical models that
make several assumptions. These ignore not only de-
tailed system parameters ranging from different micro-
architectures through varying number of cores to deep
memory hierarchy, but also a wide spectrum of device
parameters, such as diverse emerging NVM technologies
in SSDs. In addition, they overly simplified the storage-
side controller logic and firmware strategies, whereas the
future SSD-accelerated near data processing applications
require exploring a broad range of software stack config-
urations. Specifically, investigating an optimal software
design for SSD-accelerated near data processing is unfor-
tunately non-trivial due to two reasons: Firstly, SSD soft-
ware/firmware modules are tightly coupled to the under-
lying hardware logic, which can make system designers
difficult to explore the potential of near data processing
by considering a variety of system-level and hardware-
level design parameters. Secondly, their software stack
and the corresponding components are not publicly avail-
able as commercial SSD vendors need to protect their
intellectual property.

To address these limits behind the conventional
simulation-based research approaches, we propose Co-
DEN, a novel hardware/software CoDesign Emulation
platform for SSD-accelerated Near data processing. This
emulation platform is not only capable of offering flexi-
ble/scalable design space that can employ a broad range
of SSD controller and firmware policies, but also ex-
amining entire software/hardware stacks from a holistic
viewpoint. As shown in Figure 1b, our CoDEN can be
connected to a host through PCI Express (PCIe) inter-
face, a high performance memory bus, and recognized
by the host as a “real SSD storage device”. The host sys-
tem can offload specific compute functions defined by
users to our CoDEN via PCIe protocol, and those com-
pute kernel functions are executed by one or more fully
customized embedded digital signal processing (DSP)
cores. Internally, the data accesses are captured by our
SSD emulation engine, and the corresponding execution
latency values are brought by an actual NVM device
and/or NVM latency generator at runtime. In this work,
to evaluate our CoDEN platform, we implement 20 ker-
nel functions that can process data whose size varying
from 32KB to 4GB. Our comprehensive evaluation re-
sults show that the data processing bandwidth of such
kernel functions can be as high as 2 GB/sec.

Our contributions can be summarized as follows:
• Emulating endpoint SSDs for near-data processing.
While the existing analytical models may mimic the per-
formance behavior of real products, they cannot cap-
ture the detailed latency and energy values consumed
by host-side multiple software components. This can

prevent architects and system designers from exploring
the full design space that the future SSD-accelerated
near data processing applications require. In contrast,
our hardware/software codesign platform can emulate di-
verse PCIe endpoint SSD device technologies, as well
as data processing inside SSDs. Our CoDEN allows the
storage research communities to study a broad range of
cross-layer optimizations and to tailor both device-side
and host-side software stacks, being aware of different
sets of SSD and accelerator technologies.
• Designing multi-core based data process and I/O ac-
celeration. In practice, it is non-trivial to identify the
optimal number of execution units and accelerators in
diverse near data processing applications. In addition,
while devising internal communication methods and ef-
ficient architectures that exhibit low overheads are essen-
tial for future near data processing, the traditional ana-
lytical models are unfortunately limited to perform SSD
acceleration studies as they only use overly simplified
flash performance parameters. In this work, our CoDEN
provides scalable computing resources (up to eight cus-
tomized embedded processors), which are used for near
data processing acceleration as well as SSD firmware
and controller emulation. Our multi-core based emula-
tion platform is a highly-reconfigurable and can be a fi-
delity research vehicle to meet a broad range of demands
required by the future near data processing applications.
• Providing flexible controller/firmware prototyping en-
vironments. To hide the complexity of the underly-
ing NVM media, many prior studies heavily performed
simulations in designing advanced NVM controllers or
firmware. However, as SSD vendors neither reveal nor
share their intellectual properties on SSDs, there are
very few publicly available resources for the research
communities to exploit. This unfortunately makes re-
search on SSD-accelerated near-data processing severely
restricted. To address these, our CoDEN offers a very
flexible design environment that allows the architects and
system designers to prototype their firmware and con-
troller strategies into the real storage stack by acknowl-
edging the numerous computational resources and stor-
age design parameters.

2 Background

In this section, we briefly describe the details of PCIe
interface and discuss the SSD internal architecture and
data processing therein.

2.1 PCI Express
Figures 2a and 2b pictorially show the PCIe topology and
its layered-protocol architecture, respectively. In prac-
tice, the root complex connects the CPU and the PCIe
fabric/network that consists of one or more switches,
each employing multiple endpoint devices. The endpoint
is the bottom of such PCIe tree network; it can also be di-
rectly connected to the root complex without assistance
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(a) PCIe layered architecture.
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(b) PCIe topology.

Figure 2: PCI architecture.

of the switches. In addition, the PCIe interface employs
a packet-based communication protocol, which can es-
tablish a transaction channel between the PCIe endpoints
and/or the root complex using multiple packet transfers.
Unlike other memory bus technologies, unexpected and
unrecognizable data transfers are appropriately handled
as errors; entire packets in the transaction can be pro-
tected by a 16-bit or 32-bit in-band cyclic redundancy
check (CRC) code which is defined in the packet transac-
tion protocol. Since this protocol fully utilizes a packet-
based communication, PCIe employs a layered architec-
ture that is commonly used in modern network stacks.
As shown in Figure 2a, the physical layer (PHY) con-
verts memory requests or completion commands from
the target endpoint device or the root complex to a valid
transaction. The data link layer (DLL) handles integrity
of PCIe links by managing a sequence of packets, in-
cluding acknowledgement and flow control, whereas the
transaction layer routes the packets in the PCIe network.

As the bandwidth of modern SSDs exceeds the capa-
bility of thin storage interfaces (such as SATA), most
high performance SSDs employ PCIe as their interface
and are connected to a host (or CPU) as an endpoint de-
vice. The packetized protocol of the PCIe interface is
capable of handling I/O requests as well as other types of
vendor specific commands.

2.2 Data Processing in SSDs

For the past decade, SSDs have had significant architec-
tural changes by employing more NVM devices, data
buses and relevant computing resources such as multi-
core processors. For example, Samsung SSD 850 PRO
1TB accommodates 3 cores for only address translation
and data buffering with 1 GB internal buffer [8]. Fig-
ures 3a and 3b show an overview of the modern SSD
architecture and the SSD software stack therein, respec-
tively. The multiple cores are connected to the data paths
that consist of internal DRAM buffers and multiple NVM
controllers, each employing one or more NVM chips. In-
coming memory accesses can be parallelized across the
multiple NVM devices by those cores, and the aggregate
performance brought by such parallelism can be exposed
to the host via PCIe. On the other hand, as shown in Fig-
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(b) SSD s/w stack

Figure 3: SSD’s internal hardware and software architec-
ture.
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Figure 4: A high level view of our CoDEN platform.

ure 3b, a storage-side device driver and NVM firmware
in the SSD software stack are responsible for handling
all memory transactions, whereas the host interface and
buffer cache exists to hide long latency imposed by the
underlying NVMs.

Leveraging these ample SSD internal resources, there
are already commercially-available controllers (e.g.,
SandForce [9]) that perform simple data processing such
as compression or deduplication within an SSD. In ad-
dition, many prior studies [7] applied the active storage
concept into SSDs by utilizing the SSDs’ internal re-
sources and discussed the potential benefits of near-data
processing through analytical models. However, such
analytical models are limited to explore the full design
space of future near-data processing in SSDs, as they
only use overly simplified system-level or device-level
parameters.

3 Multi-core SSD Emulation Platform for
Near Data Processing

Our CoDEN provides a flexible hardware/software co-
design environment, which consists of three major com-
ponents: i) a PCIe based host interface manager, ii)
multi-core based DSP accelerators, and iii) SSD software
stack and emulation logic. In this section, we discuss
the high-level view of our co-design environment and the
corresponding CoDEN hardware/software modules.

3.1 Overview
Figure 4 illustrates the high-level view of our CoDEN
platform and the emulation procedure in performing near
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Figure 5: The important architectural components of our CoDEN platform.

data processing based on a host request. Our platform
is connected to the host’s memory controller hub (e.g.,
Northbridge) via interface protocol manager that parses
the incoming requests including computational kernel
execution and SSD reads/writes, and returns the pro-
cessed values to the host. Based on their request types,
it can retrieve target data from the SSD engine, com-
posed by multiple firmware modules and an NVM em-
ulator. During this process, the SSD engine can cap-
ture the detailed timing values, degree of parallelism, and
overheads imposed by the SSD software stack. Once
the target data is loaded, our accelerator engine(s) pro-
cesses them based on the host-defined compute kernel
functions, and only returns the result output to the host
through the interface protocol manager, which can re-
move unnecessary data movements, thereby significantly
saving energy.

3.2 Execution Units

Figure 5 illustrates the design detail of our CoDEN plat-
form. The CoDEN leverages 32-bit KeyStone based
multi-core DSP TMS320C6678 from Texas Instruments
[10], which is composed by eight 1GHz DSP cores.
Specifically, each core of the processor is specialized to
four different types of functional units (i.e., .L, .S, .D,
.M). As shown in the figure, the .L/.S units can execute
most of arithmetic, logical and branch functions similar
to a general CPU, and the .D units exhibit high perfor-
mance on loading and processing data from the internal
memory system. In addition, .M units are optimized to
perform the multiply-accumulate acceleration that com-
putes the product of two operands and adds the result to
an accumulator. In this architecture, the .S/.L functional
units are mainly used for the SSD software stack and
performing NVM-related work, whereas all other func-
tional units are executed in accelerating near data pro-
cessing. Since the performance of near data processing
can vary based on which workload and access patterns
employed, this DSP core assignment can be reconfig-
ured based on the target systems employed. For exam-
ple, as the default configuration of our on-going project,
we allocate a single core for SSD emulation (every soft-
ware modules in the stack are built in a monolithic fash-
ion), while all remaining DSP cores are assigned for near

data processing evaluations; in future, we plan to exam-
ine the best configuration to make balance between the
SSD software stack and near data processing engine. Un-
like other cores, the core-0 is mainly responsible for the
inter-process communication (IPC) and handling the host
interface logic that we will explain shortly.

3.3 Near Data Processing Emulation

The left most side of Figure 5 illustrates how the host
interface (PCIe) is connected to the internal DSP re-
sources. At the very beginning of the board initializa-
tion phase, the PCIe bootloader is loaded into the core-0
through an inter-integrated circuit bus (I2C). The boot-
loader then configures the PCIe base address registers
(BARs) in order to offer memory access to the host. It
then cleans up the PHY and initializes the interrupt con-
troller (INT) that gives control signals to the core-0 in
cases where the transaction layer receives a request from
the host. Once this link configuration related task is
completed, the host’s root complex can send compu-
tation kernel functions through PCIe (similar to mem-
ory mapped I/O). The computational kernel functions
are loaded into the CoDEN memory subsystem, and the
core-0 distributes the work across the DSP cores, which
are assigned for near data processing accelerators. The
core-0 also handles communication interrupts (for both
legacy interrupt and message signaled interrupt, referred
to as MSI) on behalf of all SSD modules and accelera-
tor engines. While executing the uploaded compute ker-
nel functions, the accelerators use a message queue to
feed the data accesses to the core-0, that forwards them
to the SSD engine for each data processing operation.
The SSD engine performs memory address translation
between logical addresses that the accelerators employ
and the physical addresses that the underlying NVM em-
ulation module exposes. The NVM emulation module
then generates appropriate latency values for each I/O
request (based on address inputs), and the SSD engine
holds the execution control as long as the latency val-
ues are generated. Once this I/O emulation is complete,
the DSP core associated to the SSD engine sends a re-
lease message to the target accelerators via the message
queue. While the SSD engine can be more complicated
in practice by adding up more NVM firmware compo-
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(b) A system-level view.
Figure 6: CoDEN in a real system.

nents such as a buffer cache or scheduler, in this work-
in-progress, we implement a simple page-granularity ad-
dress mapping logic atop of an NVM latency. After the
data processing of such kernel functions are complete,
the corresponding accelerator sends a signal to the core-
0 in oder to return the outcomes back to the host. Finally,
the PCIe core composes result packets and sends them to
the host.

It should be noted that, all the target data to process
reside upon the storage media of our CoDEN platform
in this emulation model. Consequently, it is not required
for the host to upload the target data to an accelerator. In
other words, this near data processing can remove most
of unnecessary data movements between the host and ac-
celerators, which in turn can not only improve perfor-
mance and device-level parallelism, but also save the en-
ergy on transferring the data.

4 Evaluation

We implemented twenty computational kernels that can
process data whose sizes vary from 16KB to 4GB.
Specifically, we made two different sets of kernels: i)
generic kernels and ii) advanced kernels. While the
generic functions are commonly used for arithmetic and
scanning data, the advanced kernels are related to special
math operations such as logarithm, trigonometric, and so
on. The descriptions of computational kernels we evalu-
ated are shown in Table 1. For the storage emulation, we
use the single-level cell NAND flash memory [6] whose
read and write latency values are 25 us and 220 us, re-
spectively. Using our CoDEN prototype (cf. Figure 6),
we first evaluate the bandwidth of data processing for
kernel functions of single-precision and double-precision
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Figure 7: Near data processing bandwidth.

data. We also show the performance improvement as the
number of cores assigned to accelerator increases.

4.1 Near Data Processing Bandwidth
Figure 7a shows the bandwidth of the near data process-
ing we performed on the CoDEN platform for generic
and advanced kernels. In this evaluation, all the data for-
mat we tested is single precision. One can see from this
figure that the overall bandwidth of the generic functions
is 286 MB/sec, on average, whereas that of advanced ker-
nels is 223MB/sec. Among the kernels we implemented,
“mult” and “recip” kernels show the best performance,
which is as high as 1.2 GB/sec. This is because the
.M units of our DSP core include IEEE floating-point
multiplication operations that can perform one single-
precision multiply each clock cycle. Both the multiply
and the reciprocal operations leverage this functionality
to speed up the execution of the kernels we tested.

As there are many operations that require double pre-
cision for large size matrices in linear algebra, signal
processing, and scientific calculations [1], we also eval-
uate such kernels with the double precision format, and
the results are shown in Figure 7b. While the perfor-
mance of double precision operations is two times worse
than the single precision operations, some functions on
our CoDEN prototype (e.g,. add, sub, and mult) exhibit
data processing bandwidth similar to the single precision
operations. This is because of two main contributions.
Firstly, the DSP cores we employed integrate double-
precision multiply instructions in the DSP instruction

5



Op. Param. Description Op. Param. Description
add a,b a + b exp10 a 10ˆ a
sub a,b a - b exp2 a 2ˆ a
mult a,b a * b exp a eˆ a
multi a, imd a * immediate log10 a log base 10
scan a,b if a == b log2 a log base 2
div a,b a/b long a log base e

recip a 1/a pow a,b aˆ b
atan2 a,b arc tan(a/b) rsqrt a 1/(a)ˆ (1/2)
atan a arc tan(a) sin a sine(a)
cos a cosine(a) sqrt a aˆ (1/2)

Table 1: The descriptions of the kernel functions we eval-
uated.

sets, which can perform one double-precision multiply
per cycle and also reduce the pipeline length. Secondly,
the .L and .S units support 64-bit oprands which lead to
efficient parallelization of arithmetic and logical opera-
tions.

Note that the common data processing approaches
need to load all the data from the underlying storage unit
and put them on the target accelerators through an ex-
ternal interface such as PCIe we used here, which re-
quire moving data as much as they need to process. Un-
like those conventional approaches, by using our CoDEN
prototype, the systems do not necessarily require trans-
ferring the data back and forth, which can improve per-
formance as well as reduce average energy requirements.

4.2 Scalablity Test

We also performed bandwidth improvement by adding
more cores to the accelerator, ranging from 1 to 7 – since
we need one core for SSD emulation, at most seven cores
can be allocated to near data processing. In this prelimi-
nary evaluations, we use OpenMP [4] to parallelize com-
putation kernels on the accelerator engines, and the cor-
responding results are shown in Figure 8. The bandwidth
data are normalized to the performance observed when
our CoDEN uses only a single core for near data pro-
cessing. When the kernels process a small size of data
(16KB), as shown in Figure 8a, the performance gain
is only about 155% compared to the single core based
data processing. Especially, the scan function we imple-
mented has no performance benefit even when we fully
allocate the cores to the accelerator (indicated by all in
the figure). This is because most of the time is spent
in SSD acceses and not in data processing; therefore,
the performance improvement for this function is neg-
ligible. In contrast, in cases where the kernel use big
data (4GB), the performance improvement reaches 6.8
times compared to the single core based data processing,
and such benefits are scalable as the number of cores
increases. This is because the time spent in accessing
the SSD is negligible compared to the time required for
the execution of the kernels resulting in improved perfor-
mance due to parallelism.

Core2 Core4 All
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

Im
pr
ov

em
en

t

 atan2
 atan
 scan
 cos
 div
 exp10
 exp2
 exp
 log10
 log2
 log
 pow
 recip
 rsqrt
 sin
 sqrt

(a) Small (16KB).

Core2 Core4 All
1
2
3
4
5
6
7
8

Im
pr
ov

em
en

t

 atan2
 atan
 scan
 cos
 div
 exp10
 exp2
 exp
 log10
 log2
 log
 pow
 recip
 rsqrt
 sin
 sqrt

(b) Big (4GB).

Figure 8: Performance improvement analysis for varying
number of cores.
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6 Conclusion

In this work, we proposed a novel hardware/software co-
design emulation platform. Our multi-core based SSD
emulation platform is highly-configurable and can be a
fidelity research vehicle that meets a broad range of de-
mands required by the future near data processing appli-
cations.
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