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Abstract

Entity Resolution (ER), the process of finding iden-
tical entities across different databases, is critical to
many information integration applications. As sizes of
databases explode in the big-data era, it becomes com-
putationally expensive to recognize identical entities for
all possible records with variations allowed. Profiling
results show that approximate matching is the primary
bottleneck. Micron’s Automata Processor (AP), an
efficient and scalable semiconductor architecture for
parallel automata processing, provides a new oppor-
tunity for hardware acceleration for ER. We propose
an AP-accelerated ER solution, which accelerates the
performance bottleneck of fuzzy matching for similar
but potentially inexactly-matched names, and use a
real-world application to illustrate its effectiveness.
Results show 121x to 4200x speedups for matching one
record, with better accuracy (7.6% more correct pairs
and 39% less generalized merge distance cost) over the
existing CPU method.

1 Introduction
Entity Resolution (ER), also known as Record Link-

age, Duplication Reduction or Purging/Merging prob-
lems, refers to finding records which store the same
entity within a single database or across different
databases. ER is an important kernel of a large number
of information integration applications. For example,
the Social Networks and Archival Context (SNAC)
collects records from databases all over the world to
provide an integrated platform to search historical
collections [1]. In such applications, the records of
the same person may be stored with slight differences,
because documents may come from different sources,
with different naming conventions, transliteration con-
ventions, etc. SNAC needs to find the records referring
to the same entity with different representations and
merge these records. The intuitive method is to
compare all possible pair records and check whether
a pair represents the same entity.

Determining whether two records represent the same
entity is usually computationally expensive (O(N2)).
This is even worse in the context of big data, because
one needs to compare a huge number of records. Prior
work has proposed different algorithms and computa-
tion models to improve the performance [2] [3] [4] [5].
However, the performance is still unsatisfying [6].

Micron’s Automata Processor is an efficient and scal-
able semiconductor architecture for parallel automata
processing [7]. It is a hardware implementation of
non-deterministic finite automata (NFA) and is capable
of matching a large number of complex patterns in
parallel. Therefore, we propose a hardware acceleration
solution to ER using the AP. This paper focuses on
solutions for string-based ER.

To illustrate how the AP can accelerate ER, we
present a framework and performance evaluation of a
real-world ER application. The problem is to identify
and combine the records with the same identity stored
in SNAC database.

In summary, we make the following contributions.

1. We propose a novel AP-based hardware accelera-
tion framework to solve Entity Resolution.

2. We present an automata design which can process
string-based ER, e.g. fuzzy name matching.

3. We compare the proposed methods with state-
of-the-art technology (Apache Lucene), and it achieves
both higher performance (434x speedup on average)
and better accuracy (7.6% more correct pairs and 39%
less GMD cost).

2 Related Work
Many methods have been proposed to solve ER.

One is a domain-independent algorithm for detecting
approximately duplicate database records [3]. They
first compute minimum edit-distance to recognize pairs
of possible duplicate records, and then a use union/find
algorithm to keep track of duplicate records incremen-
tally. Another method sorts the records and checks



whether the neighboring records are the same [2].
For approximate duplicates, some researchers define a
window size and a threshold of similarity, so that they
can find records similar enough to satisfy application
requirements. Apache Lucene is a high-performance
search engine and it uses a similar method [8]. The
difference lies in that Lucene calculates the score of
a document based on the query, and sorts documents
instead of every individual record. However, we are
not aware of any implementations of these algorithms
using accelerators. Our AP-based approach implements
a version of the Hamming distance based method [9].

As databases become much larger, some researchers
have suggested using blocking methods to improve
the performance [4]. This allows them to solve a
smaller database, but one needs to have some pre-
known information to divide the data and devote extra
effort to deal with records comparison across different
blocks.

Some novel architectures are proposed to accelerate
pattern matching. Fang et. al. propose the General-
ized Pattern Matching micro-engine, a heterogeneous
architecture to accelerate FSM-based applications [10].
They translate regular expressions to DFA tables, store
DFA tables in local memory and expose DFA paral-
lelism by a vector instruction interfaces so that they
can reduce instruction counts. Kolb et. al. propose De-
doop, a cloud-based infrastructure to speedup ER [5].
They gain 80x speedup by using 100 Amazon EC2
computation nodes. In contrast to these approaches,
the AP is a memory-derived architecture which can
directly implement automata efficiently and process a
large number of more complex patterns in parallel in a
single compute node.

3 Automata Processor
The Automata Processor is an efficient and scal-

able semiconductor architecture for parallel automata
processing. It uses a non-Von-Neumann architecture,
which can directly implement non-deterministic finite
automata in hardware, to match complex regular ex-
pressions. The AP can also match other types of
automata that cannot be conveniently expressed as
regular expressions.

3.1 AP Functional Elements
The AP consists of three different types of functional

elements that can be used to build automata: State
Transition Element (STE), Counters and Boolean ele-
ments [7].

Each STE can be configured to match a set of any
8-bit symbols and activate a set of successor STEs
connected to it when it finds a match. The STEs can
be configured as start, all-input and report, so that they
can read symbols from input or report when a match is
found.

Counters and Boolean elements are designed to work
with STEs to increase the space efficiency of automata
implementations and to extend computational capabil-
ities beyond NFAs.

3.2 Speed and Capacity
Micron’s current generation D480 chip is built on

45nm-equivalent technology running at an input symbol
(8-bit) rate of 133 MHz. The D480 chip has two half-
cores and each half-core has 96 blocks. Each block has
256 STEs, 4 counters and 12 Boolean elements [11]. In
total, one D480 chip has 49,152 STEs, 2,304 Boolean
elements, and 768 counter elements. Each AP board
can have up to 32 AP chips.

3.3 Programming and Reconfiguration
Automata Network Markup Language (ANML) is

an XML language for describing the composition of
automata networks. Micron also provides a graphical
user interface tool called the AP Workbench for quick
automaton design and debugging. A “macro” is a
container of automata for encapsulating a given func-
tionality, similar to a function in common programming
languages. Micron’s AP SDK also provides C and
Python interfaces to build automata, create input
streams, parse output and manage computational tasks
on the AP board. Furthermore, the symbols that an
STE matches can be reconfigured. The replacement
time is around 0.24 millisecond for one block.

4 Real-world ER Application
The term entity describes the real-world object and

resolution is used because ER is a decision process to
resolve the question. Entities are described by their
characteristics and identity attributes are the ones that
distinguish them from other entities. String-based ER
means that the identity attributes are strings.

In this paper, we use a real-world ER problem in
SNAC to illustrate how the proposed AP-accelerated
method works. When building the SNAC platform, the
same person’s name may not always be consistent from
one record to the next because of typos, mis-spellings,
different versions of abbreviation, etc. These differences
lead to three major problems. 1) One may miss some
correct results when querying a particular user; 2)
multiple entries for one entity wastes storage space; 3)
the duplicated items will also slow down the speed of
searching because the same entities are compared many
times. Therefore, SNAC needs to identify and combine
records, which is a typical ER problem. In the following
section, we refer it as the Name Matching problem,
since SNAC uses people’s names as identity attributes.
But it is important to point out that the AP-accelerated
method is not limited to Name Matching. This design
can be ported to other string-based ER applications
with small modifications.



Figure 1: Workflow of Name Matching.

5 Name Matching using the AP
5.1 Workflow

The workflow of the Name Matching problem using
the AP is shown in Figure 1. The CPU first extracts the
names from the original document in a pre-processing
step. The name-only file is then streamed into the AP.
The AP stores the names in the database. If the AP
finds a match of the name, it will report back to the
CPU; if not, the AP continues to compare the next
name. Based on the reporting STE id, the CPU can
tell which name has found a match and combine these
records.

5.2 Name Formats
One name is usually composed of several sub names,

like family name, middle name and first name. In this
paper, we only consider family name and first name,
because this is sufficient to evaluate the suitabilities
of the AP-accelerated solution. There are various
formats of sub names and it is challenging to extract all
possible format. The complexity of finding all formats
is the same as solving ER, because it turns into an ER
problem if we need to check if all the formats are unique.
Therefore, we only consider the most common formats.

We choose a subset from the whole database ran-
domly as a basis to extract a representative set of
formats for first name and family name respectively,
because they may have different formats. Middle names
are less important for correct resolution, and we find
that they can usually be ignored. For simplicity in
this initial investigation, we simply omit any such
individuals from our subset. Table 1 shows four
different variants of one family name. Some family
names can not be represented by these formats, e.g.
“Colan Lulah Johnston Durr” has more than three
parts in it. If this is the case, we treat it as a failure
(not match). Refinement of these rare special cases is
left for future work.

Various formats of first name are shown in Table 2.
Similar to family names, we choose relatively common
formats. After analyzing these formats, we find that
although some of the formats are not exactly the same

Formats Example
Abc (basic) Aachen
Abc Bcd Abad Santillan
Abc Bcd Cde Abascal Yea Sousa
Abc II Abdulhamid II

Table 1: Family name formats.

with each other, they can be processed using the same
matching structure. For example, row 2, 4, 8, 10 and
13 can use the same structure, thus simplifying the
automata design.

Formats Example
Bcd (basic) John
Bcd X. Michael K.
Bcd Cde Waino Waldemar
Bcd X. (Bcd Xyz) Chuck L. (Chuck Lehman)
B. X. P. S. P short for Paolo
B. X. (Bcd Xyz) C. G. (Charles Greeley)
B. X. (Bcd X.) C. G. (Charles G.)
Bcd Cde (Xyz) Anne Jane (Gore)
Bc. Xyz (Bcde Xyz) Jo. Hale (Joseph Hale)
Bcd, Cde Scaisbrooke, Langhorne
Bc Don (short for Donald)
Bcd O. X. (Bcd Opq Xyz) Kat S.C. (Kat Sara Cabot)
Bcd (Bcd X.) Herbert (Herbert E.)
Bcd Cde Def Efg Beats Moss Ella Campbell

Table 2: First name formats.

5.3 Automata for Last/First name
Figure 2 shows the exact-matching automaton design

to recognize family names. The first row represents
the Abc part in Table 1; the second row represents
the Bcd part; and the third row represents Cde. The
first few STEs in each row store the name characters
to be matched and the subsequent ‘+’s in are used to
occupy the remaining positions, so that names with
different lengths can share the same structure. This
allows reconfiguring more quickly, by only updating
symbols, while reusing the same structure. The ‘$’
represents space in original input and the ‘#’ sign
represents Roman numerals. If the automaton reads a
space in the input file, it will activate the next row and
check the next part in the name formats. The ‘,’ STE
is configured as a reporting STE. There are 11 STEs
in the first two rows, since the longest name length in
the sample is 11. The last row uses 5 STEs to save
hardware resources, because if it matches the first two
rows and the first few characters in the last row, it is
highly possible that it is a match. All the four family
name formats use the same structure, because it takes
less time to reconfigure the symbols matched by STEs
than to compile a new structure on the AP.

This simple design will lead to some false positives,
because it aims to support arbitrary string lengths; all
of the STEs beyond the second STE in a given row are



Figure 2: Automata design for family name (exact
match for “Adams Smith Abbe”)

Figure 3: Structure of fuzzy macro (match sequence
ABCDEF with Hamming distance = 0, 1)

connected to the reporting STE. For example, if the
automaton in Figure 1 reads Ada, it reports a match;
but it is not the name we want. False positives are
typically acceptable, but we still need to check the first
name. The chance that we get a false positive for
both family name and first name is small. Another
problem we need to address is the connectivity of the
reporting STE, as there are more (26) edges than the
AP hardware allows connected to the reporting STE.
We solve this by separating the reporting STE into
several STEs.

A fuzzy macro refers to the macro executing a fuzzy
match. One example is shown in Figure 3. It is used
to match sequence the ABCDEF and reports when the
Hamming distance is ≤ 1. This structure is also used
in [12]. Column i corresponds to the ith symbol in
the sequence. The STEs in the odd rows activate on
symbols in the target name and the even rows activate
when there are mismatches. The Hamming distance can
be extended up to k with (2k + 1) rows . All macros in
this paper adopt this structure, with different sequence
lengths. However, the macro structures are not limited
to Hamming distance. E.g. we have macro designs for
general edit distance.

To support different representations of the same
name, such fuzzy matching is required. The fuzzy-
matching (Figure 4) automata is similar to the exact
match automata. Three rows are used to match the
three corresponding parts in family name formats. The
major difference is that we use the fuzzy macro in
Figure 3 to support fuzzy match.

One problem of this design is that if the AP stores a
shorter form first, it will produce false negatives. For
example, if AP stores J. first, it will not report a match
when it reads Janet, the full form of J.. This problem
causes most of the inaccuracy in our ER outcome

Figure 4: Automata design for family name (fuzzy
macro allows Hamming distance = 0, 1)

Figure 5: Automata design for first name (fuzzy macro
allows Hamming distance = 0, 1)

(Section 6.3). In this paper, we consider ‘.’ symbol
as a character within a string. However, abbreviations
such as J. often are meant to indicate J followed by 0 or
more of any character. This is an area for future work.

The design for the first name (Figure 5) is similar to
family name design. We use an extra row to support the
‘.’ and parenthesis, which do not exist in family-name
formats.

5.4 Hybrid Version
We use a hybrid version (Figure 6) in the experiments

(Section 6). We match the first name and the family
name using one automaton, to conserve STEs. The
hypothesis is that if the family name is a match, we
can compare fewer characters within the first name.
Therefore, we connect the ‘,’ STE in family name,
which separates the family name and the first name,
to the start STE of the first name. Furthermore, the
hybrid technique allows us to use two fuzzy macros
instead of three for both family name and first name.
An STE pointing to itself is used to accept all the
remaining characters. This helps to further reduce
STEs consumed.

5.5 Cost of Porting
From the above discussion, we can see that one can

do either an exact match or a fuzzy match. For a
fuzzy match, we can build macros that allows different
degrees of fuzziness. For example, we can extend
the macro in Figure 3 to support different lengths or
longer Hamming distance. We can also pre-build some
macro structures to calculate similarities, like Hamming
distance or edit distance. Different records can share
the specific structure. Although the method is not a
universal method, it can be ported in many string-based
ER applications with small modifications.



Figure 6: Automata for the whole name (‘&’ is the
delimiter of different names.)

6 Evaluation
6.1 Experiment Setup

All the experiments are executed on a server with 16
AMD Opteron 4386 Cores (3100MHz). We use an AP
simulator to derive the execution time for the AP until
the real hardware is available. The hardware details are
presented in Section 3.2.

In the following experiments, we use Apache Lucene
on a single core as the representative CPU method.
Lucene is widely used and supports many advanced
query types, like proximity queries and range queries,
which enables us to execute fuzzy matching on the
CPU [8].

All the data is sampled from SNAC database.

6.2 Performance
To evaluate performance, we also implement the same

algorithm as the proposed method, using Python’s reg-
ular expression support on CPU. Instead of comparing
total running time, we focus on matching time, the
kernel we aim to accelerate. Total running time involves
some other overhead not related to the matching pro-
cess, such as index building for Lucene, and compiling
for the AP. We query 300 names in total, because
the average matching time stabilizes after roughly 300
names. We collect the time of the search function which
only executes matching operations and calculate the
average matching time for one name ( Figure 7).

Matching time for Lucene and the RegEx CPU
approach grow roughly linearly as the database size
increases. The much slower speed for RegEx in Python
has not been pinpointed; this is an area for future work.
The best results of these two methods are obtained
when the database size is the smallest. Detailed time
is shown in Table 3 for a total number of names
less than 14,000. 14,000 is the maximum number of
names we can store on one single board. If the total
number is smaller than this, the time stays constant and
depends only on the total input length; if it is larger,
we can either use many boards in parallel or replace
the symbols on board. We reconfigure the symbol in
STE and collect the time consumed. The matching
time increases after 14,000 and stays constant until it

Figure 7: Average time for matching one name. (X
axis represents the database size, ranging from 1,000
names to 20,000 names. Y axis represents the average
matching time for one name.)

reaches 28,000 because it needs to re-stream the input
after symbol reconfiguration. AP yields 121x, 4200x
and 434x faster than Lucene for worst case, best case
and average case.

Best Case Worst Case Average
RegEx 366,670ns 2,113,330ns 1,200,530ns
Lucene 40,000ns 126,000ns 84,760ns
AP 30ns 330ns 195ns

Table 3: Detailed Running Time.

6.3 Accuracy
To evaluate ER accuracy, we use a subset of the

names so that we can calculate the correct results
manually. We use the manual results as a gold stan-
dard. First, we collect the compression rate (number of
records after merging, over original number of records).
The results are listed in Table 4. After processing,
there are 366 records and 322 records left using Lucene
and the AP-accelerated methods respectively. The
proposed method is at least as good as Lucene; in fact,
it combines 7.5% more records.

Record Number Compression Rate
Lucene 366 64.2%
AP 322 56.7%
Manual 268 47.0%

Table 4: Compression rate.

However, using only the compression rate cannot
fully evaluate the result quality. Because it may group
records together incorrectly; or it may not combine the
records that should be grouped together. Therefore, we
use two additional metrics to evaluate accuracy.

The first metric is the number of correct pairs. If
there are more than two records in one group, every
two records inside the group is counted as one pair.
For example, if there are four records in one group,
the correct pair count is 6. We compare the results to
the gold standard calculated by hand. The results are
presented in Table 5. The AP-accelerated method and



Lucene find 278 and 255 correct pairs respectively. The
proposed method finds 7.6% more correct pairs than
Lucene does.

Correct Pairs # Pertage
Lucene 255 81.5%
AP 279 89.1%
Manual 313 100%

Table 5: Correct pairs results.

The second metric is generalized merge distance
(GMD) [13]. This method is based on the elementary
operations of merging and splitting the records group.
In our evaluation, we use a simple version of GMD,
where the costs of merging and splitting are the same.
We count the number of operations required to convert
the results to the gold standard. The results are
shown in Table 7. Both the AP-accelerated method
and Lucene need 3 split operations. For merging, the
AP-accelerated method only needs 30 operations, while
Lucene needs 51. 24 of 30 are because the shorter form
is stored on the AP first. Another 2 are because the
names are not in the formats we currently support.

Merge Split Total
Lucene 51 3 54
AP 30 3 33

Table 6: GMD results.

Our proposed method shows better results for all
three metrics. This is due to the ability of the AP to
better support fuzziness of matching.

In summary, the AP shows advantages on both
performance and result quality. Note that the AP board
we use in this paper is the first generation. Technology
scaling projections suggest that, in the future, we may
have larger capacity and higher frequency, which could
lead to even better performance.

7 Summary and Future Work
In this paper, we propose using an accelerator-based

solution to speed up ER using Micron’s AP. The
proposed method can make full use of the massive
parallelism of the AP and search for up to 14,000 names
simultaneously. We evaluate both performance and
accuracy using real data sets from SNAC. On average,
the AP-accelerated method works 434x faster than the
CPU method, finds 7.6% more correct pairs, and needs
39% less GMD cost. In summary, the AP shows great
potentials for accelerating ER.

Future work includes using the AP to process larger
datasets and rare special cases, solve other string-based
ER instances, and compare our proposed method with
other existing methods (both software and hardware
accelerations, e.g. GPU or FPGA).
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