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Abstract—With the explosive growth in data volume and the
increasing demand for real-time analysis, running analytical
frameworks on a subset of the myriad input data has been
trending. Such a data sampling technique computes based on a
combination of sub-datasets and delivers the results with an ac-
ceptable “error bars” at an interactive speed. Furthermore, data
sampling is often performed at the application level by selecting
data randomly without any knowledge of the lower level data
placement. However, for today’s widely deployed primary storage
- Solid State Disk (SSD), its I/O performance is highly dependent
on the data access pattern. Random workloads will result in sever
performance degradation for SSDs. In this paper, we propose
ApproxSSD, which is a framework that leverages the tolerance
of data selection in many applications to perform data-layout
aware sampling on the SSD array. Aiming to minimize the read
latency, ApproxSSD not only uses data-layout aware sampling to
balance workloads on SSD array, but also utilizes delay reflection
to avoid occasional contentions. We have developed a prototype
system for the ApproxSSD in Scala. Evaluation results show that
our prototype system can achieve up to 2.7 speedup compared
to Spark and maintain the high output accuracy simultaneously.

I. INTRODUCTION

A. Approximate Data Processing

Data intensive computing frameworks usually handle large
amounts of data and require fast data retrieval to support
applications, such as intelligent machine learning [21], graph
processing [9], [10], [18], [20]. To cope with the explosive
growth in data volume and facilitate near-real-time analysis,
many works have been done to reduce the input data size
and deliver approximate queries. Data movement reduction
techniques can be classified into two categories: data trans-
formation and sampling. The data transformation technique
utilizes a compressed format to represent the original data,
such as using random projection to reduce the dimension-
ality of matrix [22] and using multi-probe locality sensitive
hashing [19] in similarity search [13]. Data sampling, on the
other hand, selects a portion of input data (i.e., sub datasets)
to process and typically has a lower overhead [4], [16], [29].

An in-memory computing engine [30] has been proposed to
reduce the intermediate data access delay in many iterative
algorithms (e.g., machine learning and graph processing).
However, there is still an I/O bottleneck for big data analysis
due to slow external data access and limited DRAM capacity.
To be more specific, first, the datasets for big data applications
are often too large to fit into memory. To process the data
as a whole, applications have to repeatedly switch the data
between memory and external disk array [6]. Second, large
iterative algorithms generate a vast of intermediate data which

will exhaust memory space. DRAM memory capacity, on
the other hand, is limited by various constraints, such as
power consumption and price per gigabyte. As DRAM is
insufficient, data partitions are evicted to the disk based on the
replacement policy and reload to the memory as needed [30].
However, accessing lower level disks will introduce significant
performance penalty. As a result, data sampling is becoming
a promising technique to shrink the data size and enable the
in memory processing.

The motivation of data sampling is diminishing data access
and computation time via taking sub datasets to present the
entire input data. Due to its simplicity, the data sampling
has increased the deployment of approximate applications.
The accuracy of data sampling depends on the data features
and the sampling function. For the majority of sampling
applications, uniform and independent random data choice [2],
[4], [27] is used, while others, such as sparse datasets in
a specific field [16], [29], require conditional sampling for
better accuracy. Since data sampling can often provide an
order of magnitude performance improvement, most of the data
sampling research focus on enhancing the output accuracy or
the estimation of error bar. However, without the knowledge
of low level data layout, data sampling will impose random
I/O to the disks, resulting in suboptimal resource utilization,
such as CPU and disk waste.

B. The Pitfalls of Deploying SSD
NAND Flash-based Solid State Disks (SSDs) [3] have

recently been widely employed in data centers. Without any
moving parts, SSDs are expected to provide fast random read
accesses [25]. As a result, some literature consider SSDs
for random reads dominated applications [15], [31]. Data
sampling, which mainly performs random data access by
definition, is expected to provide faster approximate results
with low energy consumption on SSDs [23]. Unfortunately, in
contrast to these intuitive expectations, performance charac-
teristics of the SSD have dramatically changed as its internal
architecture becomes increasingly complex, and the firmware
employs advanced strategies for address mapping.

As reported, the performance of random read accesses on
SSDs is worse than that of other access patterns and operations,
including random write accesses [15]. There are two main
reasons for this. First, since random read accesses exhibit very
low locality, the cache hit ratio in the Flash Translation Layer
(FTL) is also very low. Thus, the FTL needs to read many
translation pages in order to retrieve the requested address
mapping table. This problem only gets even worse when the
firmware uses advanced fine-grained address mapping strate-
gies such as page-level FTL [12]. To cope with this problem,
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we alleviate the random read access in data sampling and
increase the spacial locality by performing semi-random data
sampling. Second, random access results in the underutilization
of internal parallelism. While sequential accesses can be easily
striped over multiple channels in a round-robin fashion to
exploit the internal parallelism of SSDs, random read accesses
can cause severe resource conflicts when requesting data from
the same internal resources (e.g., channel, package, die, plane).
The foregoing problem also exists in the SSD based storage
array. To cope with this one, we expose the internal parallelism
to the sampling process and perform parallelism aware data
sampling.

The other problem of introducing SSDs is their unpre-
dictable performance characteristics. The performance of an
SSD, even when the workload is sequential read, can degrade
with NAND flash cell aging and the increasing amount of
I/O requests. This problem is caused by the complex SSD
firmware system [3], which consists of multiple modules such
as address translation, wear leveling, garbage collection and
error block management. The complex firmware stack prevents
the run-time SSD performance from being forecasted by the
OS. Note here the worst-case latency of fully-utilized SSDs
is much worse than that of HDDs due to GC invocations in
SSDs [15]. As the overall performance of a flash array is
determined by the slowest SSD in the array, we design the
dynamic task drop based on the run-time performance of SSDs.

C. Contributions
In this paper, we have made the following contributions:
• A parallel data storage and processing engine is imple-

mented for data-layout aware sampling on SSD array.
• An intelligent task scheduling scheme is proposed to

fully release the performance potential of SSDs.
• Preliminary results shows that our prototype can achieve

upto 2.7 speedup compared to the state-of-art data anal-
ysis engine - Spark.

II. MOTIVATION AND ANALYSIS

A. Workloads Balance in Data Sampling
Sampling-based approximate query has been widely used in

modern data intensive analytic applications. Sampling obtains
a much smaller data set with the same data structure and
feature. As the sampled dataset typically can be fit into the
main memory, sampling significantly reduce the latency and
resource usage. The basic technique used to do data sampling
is random data choosing on the entire dataset. Unfortunately,
random data access results in imbalanced workloads across
SSDs in an array. The overall execution time of data sampling
is determined by the SSD with the maximum load. This has
been discussed in the classical ”balls into bins” problem [5],
[26]. We sample m sub dataset on n SSDs. When the data is
sampled uniformly, the maximum load on a single SSD might
be as large as m. However, the chance to have all the sampled
dataset stored on a single SSD is low. For the case m = n, the
probability of the maximum load logn

loglogn (1+o(1)) is 1−o(1).
For example, while we select 8 sub data from 8 SSD array and

Fig. 1: SSD bandwidth utilization under different sizes of
DRAM.

ignore other factors such as data placement and fragmentation,
the expected best outcome is load 1 sub data from each SSDs.
However, the maximum load on a single SSD is around 2.5
with high probability. This is due to the fact that data sampling
is performed by the upper level approximate applications or
computing frameworks [8], [27], while physical data layout is
masked by the storage software such as filesystems or RAID
controller. Motivated by this, we propose to expose the internal
parallelism inside storage architecture to the data sampling
framework. The data layout aware sampling can effectively
balance the maximum workload of each SSD in a storage array.

B. SSD Performance Characteristics

In memory computing has been gaining tremendous popu-
larity in the era of big data. It can substantially reduce the
disk I/O because the data are stored in DRAM by defini-
tion. However, when dataset is large enough, the in-memory
computation framework Spark will be outperformed by its
counterpart such as Hadoop [11]. For some extremely large
dataset, the Spark even crashes with JVM heap exceptions.
The challenge of allocating memory space is that the runtime
memory usage for applications are often unpredictable. To
study the Spark behavior when memory is insufficient, we run
“WordCount” under different size of physical memory. 49GB
Wikimedia database dumps [1] were utilized as the dataset in
this experiment. Fig. 1 shows the experimental results under
different size configuration of DRAM. We can see that when
memory is insufficient, both disk bandwidth usage and CPU
usage significantly decreased. This is because when the DRAM
size is too small to load the whole datasets into memory, Spark
needs to frequently switch data partitions between disks and
the main memory. The “WordCount” application is supposed
to has very simple I/O access pattern, which is dominated by
sequential reads and writes. Ideally, the disk will work very
efficiently under these type of workloads, and the traffic to
disk will increase as we reduce the DRAM size. However, as
shown in the results, the disk bandwidth usage decreased under
smaller memory configuration. This is due to the frequent data
switch has introduced a large amount of random access to
SSDs. Apart from that, the CPU usage is very low since there
is not enough data to saturate the CPU.
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Fig. 2: SSD bandwidth utilization under different number of
read threads.

The low performance associated with random access to
SSDs has been well studied in literatures [15]. SSDs have
multiple channels working independently. Multiple I/O opera-
tions can be served on different block windows simultaneously.
The block level parallelism of SSDs has been hidden to the
data parallel processing system because of the deep I/O stack,
such as the file-system and RAID controllers. As a result,
the random data access issued by job execution engine can
not fully exploit the parallelization and thus causes contention
on channels. Another reason for low disk bandwidth usage
in parallel data processing engine is the concurrent read
and write. Data processing engines exploit the chip multi-
core by launching multiple concurrent analysis jobs for each
partition to enhance the performance. This results in concurrent
read and write on SSDs. The parallel I/O can increase the
storage performance. However, concurrent read and write will
impair the performance as shown in our experiment [24]. To
study the concurrent I/O behavior, we benchmark SSDs with
Iometer [14]. In Fig. 2, we can see that with one I/O thread,
the random access performance is significantly lower than the
sequential access performance. However, if we use multiple
threads to perform random access concurrently, random and
sequential I/O performance become very close. This is due to
that with concurrent read threads, there is a higher chance
of saturating multiple parallel storage units (e.g. channel).
However, as discussed previously, increasing concurrent read
threads of a given disk will unbalance the maximum amount
of workload need to be served by each SSD.

C. Error-bar Estimation

We adopt the standard multi-stage sampling theory [8],
[17] to compute error bounds for approximate applications.
The set of supported aggregation functions includes SUM,
COUNT, AVG, and PROPORTION. In particular, we describe
the approximation of SUM as an example. Approximation for
other aggregation functions share similar process. Depending
on the dataset and computation, it may be necessary to use
bootstrap methods [2], [7], [17] to generate a lower error
bar (i.e., more accurate) by introducing additional re-sampling
overhead. Supposing we divide the entire datasets into multiple

Fig. 3: Reducing I/O Stack.

data partitions, we have a total of T items which are divided
into N partitions, and each partition has Mi items so that
T =

∑N
i=1 Mi. Each unit in partition i has an associated

value vij , and the sum of these values can be obtained by
τ =

∑N
i=1

∑Mi

j=1 vij . To estimate the sum τ , we sample a list
of n partitions which are randomly selected based on their
inclusion probability πi.

τ̂ =
N

n

n∑
i=1

(
Mi

mi

mi∑
j=1

vij)± ϵ (1)

where the error bound ϵ is defined as:

ϵ = tn−1,1−α/2

√
V̂ (τ̂) (2)

V̂ (τ̂) = N(N − n)
s2u
n

+
N

n

∑
i=1

nMi(M − i−mi)
s2i
mi

(3)

where, (s2u) is the variance between partitions, and (s2i ) is
the variance within the partition i.

To perform the multi-stage sampling, our data analysis
engine divide the job into multiple Map and Reduce tasks.
For example, in a program that counts the occurrence of a
specific word, we count the word occurrence in each partition
in Map tasks and sums the counts in Reduce tasks. The
approximation can be performed by executing map tasks on
only a subset of partitions. Several data sampling engine has
been introduced to MapReduce frameworks [8], [27]. However,
the data placement on SSD array is hidden to these data
sampling engine. Thus, none of them leverage the relationship
between data layout and access pattern to further improve the
data sampling performance on the SSD array.

III. DESIGN AND IMPLEMENTATION OF APPROXSSD

The design details are listed as follows:

A. Simplifying the I/O Stack
Parallel data analysis applications storing large datasets

consume significant I/O bandwidth. Clusters of storage servers
managed by parallel file systems (e.g., HDFS) promise to
provide scalable I/O performance for high-end applications. In
these systems, there are many interactions across application,
system software and hardware components layers. Current
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data-intensive computing frameworks [28], [30] mainly fo-
cus on providing an easy to use programming interface and
scalable computing power for applications. The interaction
between local storage is based on the local filesystem interface.
Despite both the computing framework and the underline
storage system process data in a parallel manner, there is an
isolation between their internal parallelism.

Listing 1: Selected Interface Design of ApproxSSD
1 a b s t r a c t c l a s s P a r t i t i o n [ T : Clas sTag ] ex tends S e r i a l i z a b l e {
2 var d r i v e : I n t
3 var o f f s e t : I n t
4 var s i z e : I n t
5 p r i v a t e var p e r s i s t = f a l s e
6
7 def p e r s i s t ( i m p l i c i t d r i v e : I n t = 0)
8 def cache
9 def compute

10 def c o n t e n t : Array [ T ]
11 }
12
13 a b s t r a c t c l a s s LDD[ T : Clas sTag ] ex tends S e r i a l i z a b l e {
14 def p a r t i t i o n s : Array [ P a r t i t i o n [ T ] ]
15
16 def map [V: Clas sTag ] ( v : T => V) : MapPar t i t ionsLDD [V, T ]
17
18 def f l a t M a p [V: Clas sTag ] ( v : ( T => GenTrave r sab l eOnce [V] ) ) :

MapPar t i t ionsLDD [V, T ]
19
20 def sample ( n : I n t ) : MapPar t i t ionsLDD [ T , T ]
21
22 def s a m p l e P a r t i t i o n s ( n : I n t ) :LDD[ T ]
23
24 def g r o u p B y P a r t i t i o n s [V: Clas sTag ] ( v : ( T => V) ) :

GroupByPar t i t ionsLDD [V, T ]
25
26 def s o r t W i t h P a r t i t i o n s ( v : ( ( T , T ) => Boolean ) ) :

MapPar t i t ionsLDD [ T , T ]
27
28 def f i l t e r ( v : ( T => Boolean ) ) : MapPar t i t ionsLDD [ T , T ]
29
30 def toMapLDD [U: ClassTag , V: Clas sTag ] ( f : T => (U, V) ) :

MapLDD[U, V]
31 }
32
33 a b s t r a c t c l a s s MapLDD[ T : ClassTag , U: Clas sTag ] ex tends LDD

[ ( T , U) ] {
34 def r e d u c e B y K e y P a r t i t i o n s ( f : ( U, U) => U) :MapLDD[ T , U]
35
36 def reduceByKey ( f : (U, U) => U) : ReduceByKeyLDD [ T , U]
37 }

In this paper, we directly use external SSDs as an array
and bypass multiple complex storage layers (e.g., filesystem
and RAID controller). As shown in Fig. 3, we developed a
standalone storage manager for the array. Each disk is managed
by a log-structured storage engine. The storage engine has one
log head to serve the write request and can support multiple
read threads to load data partitions concurrently. The interface
of dataset is defined as LDD in Listing 1, which is constructed
by a number of data partitions. Each partition contains it’s disk
drive ID, the offset of the data on disk and the size of the
partition. The content of a partition can either stored on the
disk, cached in memory or derived from it’s parent partitions.

B. Parallel data storage and processing engine
The existing parallel data processing frameworks does not

consider the data layout placed on the local storage, thus
they are unable to perform optimal tasks scheduling. On the

Fig. 4: Parallel Data Storage Engine.

Fig. 5: Approximate Pipeline.

contrary, the ApproxSSD has its built-in storage engine. In
the storage engine, a data partition is stored in a continuous
address space on the disk. The partition to physical storage
mapping information is always stored in the memory, so that
there is no metadata related issue which many filesystem faces.
As shown in Fig. 4, the LDD to be stored on the disk submits
all its partitions to the persist router. The persist router then
deliver the persist task to individual disk driver in a balanced
manner. For simplicity, the disk driver has only one data store
thread. All the incoming partition persist task will be served
in a log-structured manner, so that all the write to the SSD are
sequential. To boost the performance, the number of threads
that can read partitions from one disk concurrently is not
limited.

1) Data Layout Aware Sampling on SSD Array: When the
user perform approximate sampling, the input datasets are usu-
ally randomly selected without any knowledge of its physical
placement on the disk. This can result in 1) unbalanced amount
of data to be selected on disks and 2) I/O contention in the data
reads process. In ApproxSSD, we can get the corresponding
drive of a given partition in the task scheduler and planner.
The sampling algorithm first groups the partitions based on
their drive ID, then it initiates multiple sampling threads in
each group. As shown in Fig. 4, multiple sampling threads,
distinguished by the color, almost select the same amount of
data from each disk.

2) Approximate Pipeline: As discussed in the previous sec-
tion, SSD can deliver better performance when the number
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of concurrent read threads increases and saturate its internal
hardware capability. However, this is not true for the com-
puting engine as increasing the number of computing threads
will introduce significant OS scheduling and memory usage
overhead. To better exploit the SSD performance, we pipeline
the I/O and the computation workloads. Upon submission, the
LDD job is compiled into a partition dependency tree. There
are three distinct partitions: the one having the content stored
on the disk; the intermediate transactional partition that need
to be computed; and the partition with critical data need to be
persist to the disk. There are two types of dependency defined
in ApproxSSD. The map dependency has one input partition
and one output partition. The reduce dependency defines the
multi in multi out (MIMO) data transforming. The logical job
is expressed by a partition dependency tree as a DAG of tasks.
These tasks execute in parallel, and operate on a set of data
samples that are distributed across multiple disks. The storage
engine is responsible for the partitions with it’s data stored on
disk e.g. input partitions. It selectively sample these partitions
and fetch the content from the disk. Once this is done, the
partition then be submitted to Map and Reduce executor. As
shown in Fig. 5, the data sampling and task computing is
overlapped so that we can both increase the disk and CPU
usage.

3) Straggler Dropping: Because of the unpredictable per-
formance of SSDs, balance the amount of data to be sampled
from each disk can not avoid the runtime straggler. In order
to reduce the probability of a straggling SSD slowing down
the entire application, we always launch 10% more tasks on
random samples of underlying data on multiple disks and, as
a result, do not wait for the last 10% tasks to finish. With a
fine grained control over the sampling ratio of multiple disks,
avoiding straggling SSDs during data loading phase results
in further improvements in approximation runtime. Straggler
dropping does increase the chance of dropping some critical
data partitions in cases when data is sparse [16], [29]. However,
in our experiments, there is no significant error-bar changes
while approximation runtime has been noticeably reduced.

IV. PRELIMINARY EXPERIMENTS

We conducted a preliminary performance evaluation of the
ApproxSSD system by comparing against to one of the most
popular parallel data analysis platform Spark [30] version
1.6.1. We evaluated Spark and ApproxSSD by timing the
execution of the Wordcount algorithm on the 49GB Wikipedia
database dump [1]. All experiments were conducted on a single
node machine which has 8 virtual cores, 16GB of memory, 8
SSDs, and runs 64-bit Linux 3.16.0. The Spark runs under
standalone mode with software RAID 0 and ext4 file system.

As illustrated in Fig. 6, our results show that ApproxSSD
is 2.7 times faster than the in memory data parallel platform
Spark while using 0.01% sampling ratio. It is worth noticing
that ApproxSSD can even outperform Spark by 1.3 times
faster while doing whole data processing. This is because of
the reduced I/O stack and parallel data prefetch engine can
reduce the data load time. The results show an increase of
the overall performance speedup as we reduce the sampling

Fig. 6: Wordcount runtime comparison between ApproxSSD
and Spark. The reported runtime includes the time to load the
data and then run the target analysis algorithms.

Fig. 7: Error-bar comparison between ApproxSSD and
Spark. There is no noticeable error-bar changes in the Ap-
proxSSD.

ratio. The extra performance gain while doing approximative
query is because of the balanced data choices among the
SSDs and the runtime straggler dropping. The error-bar of
ApproxSSD, as shown in Fig. 7, is very comparable to
that of Spark. ApproxSSD is designed to be a general data
parallel engine that supports a wide range of operations and
applications including graph processing and machine learning,
while leveraging the performance advances developed in data
layout aware task scheduler, by integrate both the storage and
computing engine. We have already identified a number of
candidates for performance improvement in our prototype.
We belief that we can further improve the performance of
ApproxSSD in the near future, while providing a highly usable
and low cost system for complex data analysis.

V. CONCLUSIONS AND FUTURE WORK

We have presented ApproxSSD, an approximate data pro-
cessing engine that combines the parallel storage systems
and parallel data processing systems. It leverages the data
layout aware sampling in approximate query to reduce the
possible workload imbalance and I/O contentions among SSDs
thus speed up the overall performance. Rather than do the
data choice at the application level, ApproxSSD provides a
sampling ratio to the parallel storage engine. The parallel
storage engine then launch multiple data sampling threads
for each disks to maximize the disk throughput. Besides, we
also developed straggler drop which capture the runtime disk
performance and balance the amount of data been served
by each disk. We have implement the prototype system in
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Scala. Primarily results shows that out prototype system can
outperform Spark by upto 2.7.

We have identified a number of possible future optimization.
First, we will continue improving the performance of Approx-
SSD. Second, we would like to develop complex iterative ap-
proximative applications based on ApproxSSD. and implement
a semi-external memory MapReduce system abstraction. Last
but not least, we plan to investigate how data parallel system
can leverage emerging non volatile memory.
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