

Domain-Specific Architectures: The Next Wave of Computing Innovation

Antonio González

Director, ARCO Research Group Professor, Computer Architecture Department UPC, Barcelona, Spain

8th Workshop on Architectures and Systems for Big Data (ISCA 2018), Los Angeles CA, June 2, 2018

Agenda

- The next wave of innovation in computing
- Main hurdles and research directions
- A case study: automatic speech recognition
- Concluding remarks

The Next Revolution: Ubiquitous Intelligent Computing

- Computing everywhere
 - On you
 - At home
 - At work
 - In the infrastructures
 - City
 - Roads
 - Public transportation
- Interconnected
 - To cooperate and share data
- Intelligent

Intelligent Computing

- Machines that can perform human-like intellectual tasks
- Some capabilities
 - Comprehend our surroundings
 - Vision
 - Language processing
 - Learn
 - Proactively take decisions and autonomous actions
 - Personal assistants
 - Drive assistants

Dri

Very Diverse in Functionality and Requirements

- Worn devices
- Body sensors / prosthetics
- Driving assistants
- Home robots
- Healthcare devices
- Energy management
- Smart consumer electronics

Require High Performance

- Complex tasks
 - Pattern recognition
 - Objects in real scenes
 - Spoken words
 - Facial identities and expressions
 - Anomalies (e.g. potential hazards when driving)
 - Natural language processing
 - Image and audio processing
 - Decision making
 - Etc.

How To Improve EPT

- Technology
 - Scaling dimensions and other parameters

Dimension Scaling Has Been Great

• Gordon Moore predicted doubling transistor density every 2 years (1975)

Future Projections

- Dimension scaling has recently slowed down
 - Previous 2-year cadence has increased to 3+ years
- May soon come to a halt
 - Silicon lattice spacing is 5.43 Å $\approx \frac{1}{2}$ nm
 - In two generations, dimensions will be around 10 atoms (10nm \rightarrow 7 \rightarrow 5)

Consequence: Power Has Increased Over the Years

Negative Effects of Power Increase

- Autonomy of mobile devices
- Cost of running the system
- Power density reached unsustainable levels
 - Cost of cooling solution
 - Form factor due to cooling solution
 - Noise of cooling solution
 - Reliability

How Power Increase Was Stopped Around 2000

- Dynamic Power: $C_{eff} \times V_{dd}^2 \times freq$.
 - Clock gating
 - Reduces percentage of switching transistors
 - To reduce the effective capacitance
- Static Power: V_{dd} x I_{off}
 - Power gating
 - Reduces percentage of transistors that are powered on
- Sacrificing Performance
 - By not increasing frequency

How Power Increase Was Stopped Around 2000

- Dynamic Power: $C_{eff} \times V_{dd}^2 \times freq$.
 - Reducing the percentage of switching transistor
 - To reduce the effective capacitance
 - Extensive use of clock gating
- Static Power: V_{dd} x I_{off}
 - Reducing the percentage of transistors that are powered on
 - Power gating techniques
- Sacrificing performance
 - By not increasing frequency
- Specialized units
 - Specialization improves efficiency at the expense of flexibility

Future Technology Contribution To Improve EPT Summary Scaling dimensions → Benefits may soon rich a point of diminishing returns New technology → No mature alternative in the horizon Innovations from architecture will be a key driving force in the forthcoming future

Time/Opportunity for Domain-Specific Architectures

Key Features

- Many simple units
 - Simple units have low performance but consume much less energy
 - Parallelism provides the desired performance at much lower energy cost
- Much less data movement
 - For performance and energy reduction
- More specialized hardware
 - Dramatic benefits in energy-efficiency
- New ISA and programming paradigms
 - Oriented to "intelligence"-related tasks rather than numerical algebra

Example: Brain-Inspired Computing

- Human brain is very good at some of these intelligence-related tasks
 - E.g. object recognition
- Meets all key features described above
 - Composed of many simple units
 - Highly parallel
 - No centralized memory ightarrow only local data movements
 - With a very different programming paradigm: learning

Large Vocabulary Continuous Speech Recognition

- A hard task
 - Word boundaries are not known in advance
 - Co-articulatory effects are very strong
 - Real time requirements
 - Low power constraints when carried out in mobile devices
- Main approach
 - Hybrid scheme
 - Hidden Markov Model + Artificial Neural Network

Modeling Speech

Acoustic model

- An utterance consists of a sequence of units of speech
- Context dependent phones are the units used by most systems
 - About 50 phones in English
 - A phone does not always sound the same, due to co-articulatory effects
 - A triphone is a phone observed in the context of a preceding and succeeding phones

Final State (Non-emitting

- Each triphone is modeled by a small HMM (5-state in Sphinx II)

Modeling Speech

- Acoustic model (cont'd)
 - In the order of 1M or more states
 - Training data may be insufficient or too costly
 - States are often clustered (tied) into equivalence classes called senones
 - Word HMMs are built by concatenating the HMMs of individual triphones
 - There may be more than one model for a given word, to account for alternative pronunciations
 - Continuous speech is modeled by adding null transitions from the final state of every word to the initial state of all words in the vocabulary
 - Cross-word transition probabilities are given by the language model (e.g. trigram)

Modeling Speech

• Language model (aka grammar)

- Helps to select the most likely word sequence from alternative hypotheses produced during search process
- Example
 - Trigram: triples and their probability of occurrence
- Backoff mechanism (example for trigram grammar)
 - Only the most frequent trigrams are included
 - If the desired trigram is not found, one falls back to bigram or unigram probabilities

Offline Composition

• In the language model, every word transition is replaced by its corresponding acoustic model

Offline Composition

• Resulting in huge WFST (e.g. 22M states, 1.1 GB for Kaldi Tedlium)

DNN Pruning [ISCA 2018]

- DNN pruning has recently become popular
 - DNN are usually oversized so many neurons and connections can be removed without impacting accuracy
 - Several recent works proposed different heuristics with high effectiveness (>50% pruning)
 - Large reduction in computations, energy and storage requirements
- However: How accuracy is measured?
 - Pruning studies normally use Top-1 or Top-5
 - This may not be adequate in some use cases of DNN such as ASR

The Idea [ISCA 2018]

- Keep the N-best hypotheses, regardless of confidence
- The problem: Compute the N-best is costly
 - Requires sorting of a huge number of hypotheses (20K on average, up to 300K in Kaldi-LibriSpeech)
- Our proposal: Approximate the N-best
 - Using a K-way set-associative hash table
 - Keeping the K-best for each entry

Our Proposal: Computation Reuse [ISCA 2018] Reuse previous output Make adjustments to take into account input variations If number of different inputs is small, adjustments are cheaper than computing the output from scratch

Results

- Input similarity: 45%
- Computations saved: 53%
- Speedup: 1.9x
- Energy reduction: 49%

Summary

- Next revolution in computing
 - A broad variety of intelligent devices
 - Ubiquitous
 - Applications very different to typical number crunching
 - Dramatic improvements in energy efficiency are required
- Call for domain-specific architectures
 - Massive parallelism
 - Reduction in data movement
 - More specialized hardware
 - New programming paradigms
- Case Study: UNFOLD, an efficient speech-recognizer for mobile system
 - 550x real-time (1.8 ms per second of speech)
 - 1.4 mW average power (1.4 mJ per second of speech)
 - 18 mm2 (11 for Viterbi + 7 for DNN)
 - Less than 30 MB of DRAM memory