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Agenda

• The next wave of innovation in computing
• Main hurdles and research directions
• A case study: automatic speech recognition
• Concluding remarks
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The First Revolution in Computing
The First Computers

Univac I, 1951

IBM 701, 1952

ENIAC, 1947

CDC 7600, 1969
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The Second Revolution
Personal Computers

PC Laptop Ultrabook

Tablet Convertible Smartphone
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The Next Revolution: Ubiquitous Intelligent Computing

• Computing everywhere
– On you
– At home
– At work
– In the infrastructures

• City
• Roads
• Public transportation

• Interconnected
– To cooperate and share data

• Intelligent

6

Intelligent Computing

• Machines that can perform human-like 
intellectual tasks

• Some capabilities
– Comprehend our surroundings

• Vision
• Language processing

– Learn
– Proactively take decisions and autonomous actions

• Personal assistants
• Drive assistants
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Very Diverse in Functionality and Requirements

• Worn devices
• Body sensors / prosthetics
• Driving assistants
• Home robots
• Healthcare devices
• Energy management
• Smart consumer electronics
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Require High Performance

• Complex tasks
– Pattern recognition
• Objects in real scenes
• Spoken words
• Facial identities and expressions
• Anomalies (e.g. potential hazards when driving)

– Natural language processing
– Image and audio processing
– Decision making
– Etc.
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And Must be Extremely Energy-Efficiency

• Small wireless devices have very limited battery capacity
• Performance (“intelligence”) is limited by energy-efficiency

– System power = EnergyPerTask * TaskPerSecond
– Given a fixed power budget,
• EPT has to decrease at the same pace as TPS (performance) increases

Reducing EPT is the key for delivering increased performance
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How To Improve EPT

• Technology
– Scaling dimensions and other parameters
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Ideal Technology Scaling

• Rules given by Robert Dennard in 1974
– Scaling by a factor k
• Device dimension (tox, L, W) 1/k
• Doping concentration k
• Voltage 1/k

• Current  1/k
• Capacitance 1/k
• Delay time per circuit 1/k
• Power dissipation per circuit 1/k2

• Power density 1
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Dimension Scaling Has Been Great

• Gordon Moore predicted doubling transistor density every 2 years (1975)

1.95x / 2 years
And it happened 

for the last 40 years
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Future Projections

• Dimension scaling has recently slowed down

– Previous 2-year cadence has increased to 3+ years

• May soon come to a halt

– Silicon lattice spacing is 5.43 Å ≈ ½  nm

– In two generations, dimensions will be around 10 atoms (10nm à 7 à5)
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Supply Voltage Has Scaled Much Less 
Than Dennard’s Rule

8%	decrease	per	year
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Consequence: Power Has Increased Over the Years

• Exponential increase
• Until early 2000s
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Negative Effects of Power Increase

• Autonomy of mobile devices
• Cost of running the system
• Power density reached 

unsustainable levels
– Cost of cooling solution
– Form factor due to cooling 

solution
– Noise of cooling solution
– Reliability

Source: S. Borkar, IEEE Micro 1999; F. Pollack, MICRO-1999; R. Ronen, WCED 2001
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How Power Increase Was Stopped Around 2000

• Dynamic Power: Ceff x Vdd
2 x freq.

– Clock gating
– Reduces percentage of switching transistors
• To reduce the effective capacitance

• Static Power: Vdd x Ioff
– Power gating
– Reduces percentage of transistors that are 

powered on
• Sacrificing Performance

– By not increasing frequency
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How Power Increase Was Stopped Around 2000

• Dynamic Power: Ceff x Vdd
2 x freq.

– Reducing the percentage of switching 
transistor
• To reduce the effective capacitance

• Extensive use of clock gating 
• Static Power: Vdd x Ioff

– Reducing the percentage of transistors 
that are powered on

– Power gating techniques
• Sacrificing performance

– By not increasing frequency
• Specialized units

– Specialization improves efficiency at the 
expense of flexibility

Qualcomm Snapdragon 820

Source: HotChips 2015
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Future Technology Contribution To Improve EPT

• Summary
– Scaling dimensions à Benefits may soon rich a point of diminishing returns
– New technology à No mature alternative in the horizon

Innovations from architecture 
will be a key driving force in the forthcoming future 

22

General Purpose Architectures 

• Great improvements in the past
– Pipelining
– Caches
– Branch prediction
– RISC
– Superscalar
– Out of order execution
– Multithreading
– Multicore

• After 5 decades of evolution they are highly optimized and difficult to 
improve

Expected to provide minor improvements in the future
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Time/Opportunity for Domain-Specific Architectures

• Key Features
– Many simple units 
• Simple units have low performance but consume much less energy
• Parallelism provides the desired performance at much lower energy cost

– Much less data movement
• For performance and energy reduction

– More specialized hardware
• Dramatic benefits in energy-efficiency

– New ISA and programming paradigms
• Oriented to “intelligence”-related tasks rather than numerical algebra
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Example: Brain-Inspired Computing

• Human brain is very good at some of these 
intelligence-related tasks
– E.g. object recognition

• Meets all key features described above
– Composed of many simple units
– Highly parallel
– No centralized memory à only local data movements
– With a very different programming paradigm: learning

100 μm



6/11/18

12

A Case Study:
Automatic Speech Recognition
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Large Vocabulary Continuous Speech Recognition

• A hard task
– Word boundaries are not known in advance
– Co-articulatory effects are very strong
– Real time requirements 
– Low power constraints when carried out in mobile devices

• Main approach
– Hybrid scheme
• Hidden Markov Model + Artificial Neural Network
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Modeling Speech 

• Acoustic model
– An utterance consists of a sequence of units of speech
– Context dependent phones are the units used by most systems 
• About 50 phones in English
• A phone does not always sound the same, due to co-articulatory effects
• A triphone is a phone observed in the context of a preceding and succeeding 

phones
– Each triphone is modeled by a small HMM (5-state in Sphinx II)
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Modeling Speech 

• Acoustic model (cont’d)

– In the order of 1M or more states

• Training data may be insufficient or too costly

• States are often clustered (tied) into equivalence classes called senones

– Word HMMs are built by concatenating the HMMs of individual triphones

– There may be more than one model for a given word, to account for 
alternative pronunciations

– Continuous speech is modeled by adding null transitions from the final state 
of every word to the initial state of all words in the vocabulary

• Cross-word transition probabilities are given by the language model (e.g. 
trigram)
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Modeling Speech

• Language model (aka grammar)
– Helps to select the most likely word sequence 

from alternative hypotheses produced during 
search process

– Example
• Trigram: triples and their probability of 

occurrence
– Backoff mechanism (example for trigram 

grammar)
• Only the most frequent trigrams are included 
• If the desired trigram is not found, one falls 

back to bigram or unigram probabilities
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Offline Composition

• In the language model, every word transition is replaced by its 
corresponding acoustic model
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Offline Composition

• Resulting in huge WFST (e.g. 22M states, 1.1 GB for Kaldi Tedlium)
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Viterbi Beam Search

• Evaluates all transitions between 
previous frame and current one

• For every state it computes the probability corresponding 
to the best state sequence from time 0 to time t

• Each state has a single best predecessor, which is recorded
• The best state sequence is determined by starting at the final state and going 

backwards following the best predecessor at each point
• Beam search heuristic to reduce the search space

– At each time t, the state with max probability is found: Pmax(t)
– All states with probabilities lower than Pmax(t) x B are not considered for computations at time t+1
– B is an appropriately chosen threshold lower than 1 that determines the width of the “beam”
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Putting It All Together

Sound Signal Graph Search

Sentence

Feature Extraction

\

Likelihood Computation

Weighted-Finite-State-Transducer
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Accelerated ASR System 

ASR System
Memory

Audio
frames

Acoustic
score

Word
lattice

CPU
(Feature extraction)

DNN
Accelerator

Viterbi
Accelerator
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UNFOLD: On-The-Fly Composition [MICRO 2017]

Acoustic Model
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Viterbi Accelerator

111x Speedup

22x Speedup

48x Reduction

628x Reduction
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Memory Requirements

• Huge reduction compared with fully-composed approach
– 31x reduction in storage
– 70% reduction in memory bandwidth
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DNN Pruning [ISCA 2018]

• DNN pruning has recently become popular

– DNN are usually oversized so many neurons and connections can be removed 

without impacting accuracy

– Several recent works proposed different heuristics with high effectiveness 

(>50% pruning)

– Large reduction in computations, energy and storage requirements

• However: How accuracy is measured?

– Pruning studies normally use Top-1 or Top-5

– This may not be adequate in some use cases of DNN such as ASR
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Our Observation: DNN Pruning Reduces Confidence

Top-1 is the same for all but its likelihood is reduced drastically 

Acoustic scores for one particular frame
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The Consequences: 
Less Confidence Requires to Evaluate More Hypothesis
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The Idea [ISCA 2018]

• Keep the N-best hypotheses, regardless of confidence

• The problem: Compute the N-best is costly

– Requires sorting of a huge number of hypotheses (20K on average, up to 300K 
in Kaldi-LibriSpeech)

• Our proposal: Approximate the N-best

– Using a K-way set-associative hash table

– Keeping the K-best for each entry 
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Performance and Energy Consumption

• 5.6x speedup • 5.2x energy savings
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Improving the DNN Through Computation Reuse 

• Observation: Consecutive inputs are quite similar
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Our Proposal: Computation Reuse [ISCA 2018]

• Reuse previous output
• Make adjustments to take into account input variations

– If number of different inputs is small, adjustments are cheaper than 
computing the output from scratch
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Results

• Input similarity: 45%
• Computations saved: 53%
• Speedup: 1.9x
• Energy reduction: 49%
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Summary

• Next revolution in computing 

– A broad variety of intelligent devices

– Ubiquitous

– Applications very different to typical number crunching

– Dramatic improvements in energy efficiency are required

• Call for domain-specific architectures

– Massive parallelism

– Reduction in data movement

– More specialized hardware

– New programming paradigms

• Case Study: UNFOLD, an efficient speech-recognizer for mobile system

– 550x real-time (1.8 ms per second of speech)

– 1.4 mW average power (1.4 mJ per second of speech)

– 18 mm2 (11 for Viterbi + 7 for DNN)

– Less than 30 MB of DRAM memory


