
Christina Delimitrou
Cornell University

with Yu Gan, Yanqi Zhang, Shuang Chen, Neeraj Kulkarni, Ariana Bruno,
Justin Hu, Brian Ritchken, Brendon Jackson, Ankitha Shetty, Nayan Katarki,
Brett Clancy, Chris Colen, Dailun Cheng, Siyuan Wang, Leon Zaruvinsky,

Mateo Espinosa, Meghna Pancholi, Siyuan Hu

ASBD	Workshop	– June	2nd 2018

The Hardware & Software Implications of
Microservices and How Big Data Can Help

2

¨ Shift from monoliths to microservices:
¤ Modularity, specialization, simplicity, accelerated development
¤ Change assumptions about datacenter server design
¤ Complicate scheduling and resource management
¤ Amplify tail@scale effects

¨ Revisit architectural design decisions for microservices
¨ Highlight management challenges of microservices
¨ Motivate the need for data-driven approaches for systems

whose scale & complexity keeps increasing

Executive Summary

3

From Monoliths to Microservices

4

¨ Advantages of microservices:
¤ Ease & speed of code development & deployment
¤ Security, error isolation
¤ PL/framework heterogeneity

¨ Challenges of microservices:
¤ Change server design assumptions
¤ Complicate resource management à dependencies
¤ Amplify tail-at-scale effects
¤ More sensitive to performance unpredictability
¤ No representative end-to-end apps with microservices

Motivation

5

¨ 4 end-to-end applications using popular open-source
microservices à ~30-40 microservices per app
¤ Social Network
¤ Movie Reviewing/Renting/Streaming
¤ E-commerce
¤ Drone control service

¨ Programming languages and frameworks:
¤ node.js, Python, C/C++, Java/Javascript, Scala, PHP, and Go
¤ Nginx, memcached, MongoDB, CockroachDB, Mahout, Xapian
¤ Apache Thrift RPC, RESTful APIs
¤ Docker containers
¤ Lightweight RPC-level distributed tracing

An End-to-End Suite for Cloud & IoT Microservices

6
mongoDB

MovieReviewDBReviewStorage

mongoDB

uniqueID Compose
Phase

Store
Phase

memcached

All arrows are Thrift RPCs

memcached

AssignRatingmovieID

Login

text

ComposeReview

UpdateMovieUserReviewDB

Client

nginx

http

http

fastcgi

Front-
end

php-fpm

Load Balancer

mongoDB

memcached

UpdateUser

mongoDB

memcached

Movie Streaming

7

¨ Browse movie info (movie plot, photos, videos, cast, stats, etc.)
¨ ML widgets:

n Recommender for movies to watch
n Recommender for ads

¨ User authentication/Payment
¨ Search:

n Xapian: search movie DB

¨ Analytics:
n Mahout: user analytics based on input stored in HDFS
n Spark MLlib: in-memory ML analytics

Movie Streaming

8

¨ Big vs. small servers:
¤ Power management using RAPL
¤ More pressure on single-thread

performance, low tail latency

Architectural Implications [CAL’18]

ISCA 2018 Submission #7
Confidential Draft: DO NOT DISTRIBUTE

DeathStarBench: An Open-Source Microservices Suite and Its

Implications for Cloud and IoT Applications

ABSTRACT
Cloud services have recently undergone a shift from mono-
lithic applications, to complex dependency graphs with hun-
dreds of microservices each. Microservices present both op-
portunities and challenges when optimizing for application
quality of service (QoS) and cloud utilization.

In this paper we explore the implications microservices
have on cloud and IoT applications. We first present Death-
StarBench, a novel, open-source benchmark suite built with
microservices that is representative of large end-to-end ser-
vices, modular and extensible. DeathStarBench includes a
social network, a movie streaming service, an e-commerce
platform, and IoT applications for UAVs. We then use Death-
StarBench to study the architectural characteristics of mi-
croservices, revisit the big versus small core debate, and
quantify the i-cache pressure they incur. We also study the
tail at scale effects of microservices on a cluster with hun-
dreds of servers on Amazon EC2 and quantify the impact of
cluster size and subpar servers on end-to-end performance.

1. INTRODUCTION
Cloud computing services are governed by strict quality

of service (QoS) constraints in terms of throughput and tail
latency, as well as availability and reliability guarantees [21].
In an effort to satisfy these, often contradicting constraints,
cloud applications have gone through extensive redesigns [17,
4, 31]. This includes a recent shift from monolithic services
that encompass the entire service’s functionality in a single
binary, to dependency graphs with hundreds or thousands of
small, mostly self-contained microservices [17].

Microservices are appealing for several reasons. First,
they simplify and accelerate deployment, as each production
team takes ownership of only a small fraction of the entire
service’s functionality. They also allow each microservice
to be developed in a programming language that best suits
its requirements, only requiring a common cross-application
API, typically over remote procedure calls (RPC) [1, 5, 6]
or RESTful APIs. In contrast, monoliths make frequent up-
dates cumbersome and error-prone, and greatly limit the lan-
guages that can be used for development.

Second, microservices simplify correctness and perfor-
mance debugging, as bugs can be isolated in specific appli-
cation components, unlike monoliths, where resolving cor-
rectness issues often involves troubleshooting the end-to-
end service. Third, microservices fit nicely the model of
a container-based datacenter, with a microservice per con-
tainer, and containers of complementary resource require-
ments mapped to a physical host, improving mobility, and
isolation. Finally, the large number of available open-source
microservices helps developers bring up services quickly and

Figure 1: Network ver-
sus application processing for
monoliths and microservices.

Figure 2: Tail latency
requirements in mono-
lithic cloud applications
and microservices.

with less effort. An increasing number of cloud providers,
including Twitter, Netflix, AT&T, Amazon, and EBay have
adopted this application model.

Apart from the cloud, and for similar reasons, microser-
vices are well suited for internet-of-things (IoT) applications.
These services are written in languages for mobile comput-
ing, and may host safety-critical computation, which puts
pressure on correctness verification. Edge devices also have
limited resources, and may need to leverage the cloud for
more resource-intensive computation [28, 30].

Despite their advantages, microservices change several as-
sumptions we use to design and manage cloud systems. For
example, even though the cluster manager can scale out indi-
vidual microservices on-demand instead of the entire mono-
lith, dependencies between microservices can hurt QoS. Ex-
isting cluster managers that optimize for performance and/or
utilization [22, 24, 59, 47, 48, 49, 23, 56, 43, 25, 50, 44,
45, 32, 54] are not expressive enough to account for the im-
pact each pair-wise dependency has on end-to-end perfor-
mance. As more cloud providers shift to this application
model, there is a substantial risk of sacrificing both perfor-
mance and resource utilization.

The shift to microservices also has implications in server
design. This includes determining whether big or small cores
are preferable [35, 34, 33, 29], quantifying the i-cache pres-
sure from large application binaries [26, 39], and determin-
ing to what extent hardware acceleration can assist microser-
vices. Fig. 1 shows the breakdown of execution time to net-
work (TCP) versus application processing for two mono-
lithic cloud applications (nginx and memcached), and for
a social network implemented using microservices. Where
before only a small fraction of time went to network pro-
cessing, with microservices 36.3% of the end-to-end latency
is devoted to RPCs, shifting the resource bottlenecks of the
system. Similarly, while the end-to-end application latency

9

¨ Big vs. small servers:
¤ Power management using RAPL
¤ More pressure on single-thread

performance, low tail latency
¤ Low-power SoCs, e.g., Cavium ThunderX2
¤ Similar latency, but earlier saturation

Architectural Implications

Figure 16: Tail latency with increasing load and decreasing frequency (RAPL)
for traditional monolithic cloud applications, and the four end-to-end Death-
StarBench services.

0 50 100 150 200 250
QPS

0
20
40
60
80

100
120
140
160
180

Ta
il

La
te

nc
y

(m
se

c) Social Network

0 100 200 300 400 500
QPS

5
10
15
20
25
30
35
40
45
50

Ta
il

La
te

nc
y

(m
se

c) Movie Streaming

Figure 17: Throughput-tail la-
tency comparison between an In-
tel Xeon and a Cavium Thun-
derX server.

pecially pronounced in Social Network, and Movie Stream-
ing because of their stricter latency requirements, and E-
commerce, because it is more compute intensive. The IoT
application does not suffer as much, because it is mostly
network-limited, and the NIC is the same as in the high-end
servers. Low power machines can still be used for microser-
vices, for example by using the per-microservice character-
ization above to map microservices out of the critical path,
or insensitive to frequency scaling on low-power nodes.
I-cache pressure: Prior work has characterized the high
pressure cloud applications put on the instruction cache [26,
39]. Since microservices decompose what would be one
large binary to many loosely-connected services, we exam-
ine whether previous results on i-cache pressure still hold.
Fig. 18 shows the MPKI of each microservice in the four
end-to-end applications. We also include the backend caching
and database layers for comparison. First, the i-cache pres-
sure of nginx, memcached, and mongoDB remains high across
services, consistent with prior work. The i-cache pressure
of the remaining microservices is considerably lower, es-
pecially for E-commerce, which is expected given the mi-
croservices’ small code footprints. node.js applications out-
side the context of microservices do not have low i-cache
miss rates [60], hence we conclude that it is the simplic-
ity of microservices which results in better i-cache local-
ity. Most i-cache misses, especially in Social Network and
Movie Streaming happen in kernel mode, and based on our
analysis with vTune, are attributed to the Thrift framework.

We also examined the LLC and D-TLB misses across mi-
croservices, and found them considerably lower than for tra-
ditional cloud applications, which is consistent with the push
for microservices to be mostly stateless. This is also in agree-
ment with the recent trend towards serverless functions, where
a task can run anywhere in a disaggregated datacenter.

4. TAIL AT SCALE EFFECTS
To study the performance and efficiency issues of microser-

vices at scale, we also run DeathStarBench on a dedicated
EC2 cluster with 10 up to 400 c5.18xlarge instances (72
vCPUs, 144GB RAM each).
Cluster size: Fig. 19 shows the performance scalability of
the four end-to-end services as we increase the cluster size.
For the IoT application we only scale the cluster size up to
40 nodes, because of the limited number of edge devices we

have to keep the machines busy (4 drones). Note that the
x-axis is logarithmic. The input request pattern for all ser-
vices is uniform and random, as is the popularity distribution
of users, movies, drones, etc. In general, as the size of the
cluster grows throughput increases, almost linearly at first
(up to 40-100 servers), and sublinearly beyond that. This
is more pronounced in the E-commerce service, and beyond
200 nodes in Social Network and Movie Streaming as well.
For comparison, we also show the scalability of nginx as
the number of servers increases. Unlike the DeathStarBench
services, nginx scales linearly all the way to 400 nodes. The
reason behind the suboptimal scalability of microservices in
large clusters is the fact that the end-to-end tail latency is
limited by the slowest microservice on the critical path. This
introduces a new dimension in tail at scale effects beyond
fanout to many servers [21], and needing to meet QoS across
many users, and puts even more pressure on techniques that
improve performance predictability.

The Social Network graph also includes a non-uniform,
skewed distribution, where each user’s activity and popular-
ity is extracted from the Higgs Boson Twitter dataset and
scaled down to almost saturate the 200 server EC2 clus-
ter [13]. In this case latency spikes much earlier, since the
small number of microservices responsible for the popular
users are affecting the end-to-end service’s QoS.
Request skew: To better understand the impact of skew we
now sweep the skew parameter from 0 to 100%, where skew
is defined as [100�u], with u the fraction of users initiating
90% of total requests. Fig. 20 shows that when skew is 0%,
i.e., the distribution is uniform, all services achieve their max
QPS under a tail latency QoS, for that cluster size (S = 200).
As skew starts increasing, however, goodput (throughput un-
der QoS) quickly drops, and when less than 20% of users are
responsible for the majority of requests, the goodput of the
system reaches almost zero.
Impact of slow servers: Fig. 20b show the impact a small
number of slow servers has on overall QoS at large scale.
When more than 1% of servers behave poorly, the goodput
is almost zero, as these slow servers degrade the end-to-end
QoS. Moreover, apart from degrading tail latency, a small
fraction of slow servers can degrade the latency of most re-
quests. Fig. 20c shows the probability that a request will be
slow (over QoS) as the fraction of slow servers increases.
Beyond 1% of slow servers almost all requests are degraded.

10

Figure 16: Tail latency with increasing load and decreasing frequency (RAPL)
for traditional monolithic cloud applications, and the four end-to-end Death-
StarBench services.

0 50 100 150 200 250
QPS

0
20
40
60
80

100
120
140
160
180

Ta
il L

at
en

cy
 (m

se
c) Social Network

Figure 17: Throughput-tail la-
tency comparison between an In-
tel Xeon and a Cavium Thun-
derX server.

pecially pronounced in Social Network, and Movie Stream-
ing because of their stricter latency requirements, and E-
commerce, because it is more compute intensive. The IoT
application does not suffer as much, because it is mostly
network-limited, and the NIC is the same as in the high-end
servers. Low power machines can still be used for microser-
vices, for example by using the per-microservice character-
ization above to map microservices out of the critical path,
or insensitive to frequency scaling on low-power nodes.
I-cache pressure: Prior work has characterized the high
pressure cloud applications put on the instruction cache [26,
39]. Since microservices decompose what would be one
large binary to many loosely-connected services, we exam-
ine whether previous results on i-cache pressure still hold.
Fig. 18 shows the MPKI of each microservice in the four
end-to-end applications. We also include the backend caching
and database layers for comparison. First, the i-cache pres-
sure of nginx, memcached, and mongoDB remains high across
services, consistent with prior work. The i-cache pressure
of the remaining microservices is considerably lower, es-
pecially for E-commerce, which is expected given the mi-
croservices’ small code footprints. node.js applications out-
side the context of microservices do not have low i-cache
miss rates [60], hence we conclude that it is the simplic-
ity of microservices which results in better i-cache local-
ity. Most i-cache misses, especially in Social Network and
Movie Streaming happen in kernel mode, and based on our
analysis with vTune, are attributed to the Thrift framework.

We also examined the LLC and D-TLB misses across mi-
croservices, and found them considerably lower than for tra-
ditional cloud applications, which is consistent with the push
for microservices to be mostly stateless. This is also in agree-
ment with the recent trend towards serverless functions, where
a task can run anywhere in a disaggregated datacenter.

4. TAIL AT SCALE EFFECTS
To study the performance and efficiency issues of microser-

vices at scale, we also run DeathStarBench on a dedicated
EC2 cluster with 10 up to 400 c5.18xlarge instances (72
vCPUs, 144GB RAM each).
Cluster size: Fig. 19 shows the performance scalability of
the four end-to-end services as we increase the cluster size.
For the IoT application we only scale the cluster size up to
40 nodes, because of the limited number of edge devices we

have to keep the machines busy (4 drones). Note that the
x-axis is logarithmic. The input request pattern for all ser-
vices is uniform and random, as is the popularity distribution
of users, movies, drones, etc. In general, as the size of the
cluster grows throughput increases, almost linearly at first
(up to 40-100 servers), and sublinearly beyond that. This
is more pronounced in the E-commerce service, and beyond
200 nodes in Social Network and Movie Streaming as well.
For comparison, we also show the scalability of nginx as
the number of servers increases. Unlike the DeathStarBench
services, nginx scales linearly all the way to 400 nodes. The
reason behind the suboptimal scalability of microservices in
large clusters is the fact that the end-to-end tail latency is
limited by the slowest microservice on the critical path. This
introduces a new dimension in tail at scale effects beyond
fanout to many servers [21], and needing to meet QoS across
many users, and puts even more pressure on techniques that
improve performance predictability.

The Social Network graph also includes a non-uniform,
skewed distribution, where each user’s activity and popular-
ity is extracted from the Higgs Boson Twitter dataset and
scaled down to almost saturate the 200 server EC2 clus-
ter [13]. In this case latency spikes much earlier, since the
small number of microservices responsible for the popular
users are affecting the end-to-end service’s QoS.
Request skew: To better understand the impact of skew we
now sweep the skew parameter from 0 to 100%, where skew
is defined as [100�u], with u the fraction of users initiating
90% of total requests. Fig. 20 shows that when skew is 0%,
i.e., the distribution is uniform, all services achieve their max
QPS under a tail latency QoS, for that cluster size (S = 200).
As skew starts increasing, however, goodput (throughput un-
der QoS) quickly drops, and when less than 20% of users are
responsible for the majority of requests, the goodput of the
system reaches almost zero.
Impact of slow servers: Fig. 20b show the impact a small
number of slow servers has on overall QoS at large scale.
When more than 1% of servers behave poorly, the goodput
is almost zero, as these slow servers degrade the end-to-end
QoS. Moreover, apart from degrading tail latency, a small
fraction of slow servers can degrade the latency of most re-
quests. Fig. 20c shows the probability that a request will be
slow (over QoS) as the fraction of slow servers increases.
Beyond 1% of slow servers almost all requests are degraded.

10

Figure 16: Tail latency with increasing load and decreasing frequency (RAPL)
for traditional monolithic cloud applications, and the four end-to-end Death-
StarBench services.

0 50 100 150 200 250
QPS

0
2
4
6
8

10
12

Ta
il

La
te

nc
y

(s
ec

) E-commerce

Figure 17: Throughput-tail la-
tency comparison between an In-
tel Xeon and a Cavium Thun-
derX server.

pecially pronounced in Social Network, and Movie Stream-
ing because of their stricter latency requirements, and E-
commerce, because it is more compute intensive. The IoT
application does not suffer as much, because it is mostly
network-limited, and the NIC is the same as in the high-end
servers. Low power machines can still be used for microser-
vices, for example by using the per-microservice character-
ization above to map microservices out of the critical path,
or insensitive to frequency scaling on low-power nodes.
I-cache pressure: Prior work has characterized the high
pressure cloud applications put on the instruction cache [26,
39]. Since microservices decompose what would be one
large binary to many loosely-connected services, we exam-
ine whether previous results on i-cache pressure still hold.
Fig. 18 shows the MPKI of each microservice in the four
end-to-end applications. We also include the backend caching
and database layers for comparison. First, the i-cache pres-
sure of nginx, memcached, and mongoDB remains high across
services, consistent with prior work. The i-cache pressure
of the remaining microservices is considerably lower, es-
pecially for E-commerce, which is expected given the mi-
croservices’ small code footprints. node.js applications out-
side the context of microservices do not have low i-cache
miss rates [60], hence we conclude that it is the simplic-
ity of microservices which results in better i-cache local-
ity. Most i-cache misses, especially in Social Network and
Movie Streaming happen in kernel mode, and based on our
analysis with vTune, are attributed to the Thrift framework.

We also examined the LLC and D-TLB misses across mi-
croservices, and found them considerably lower than for tra-
ditional cloud applications, which is consistent with the push
for microservices to be mostly stateless. This is also in agree-
ment with the recent trend towards serverless functions, where
a task can run anywhere in a disaggregated datacenter.

4. TAIL AT SCALE EFFECTS
To study the performance and efficiency issues of microser-

vices at scale, we also run DeathStarBench on a dedicated
EC2 cluster with 10 up to 400 c5.18xlarge instances (72
vCPUs, 144GB RAM each).
Cluster size: Fig. 19 shows the performance scalability of
the four end-to-end services as we increase the cluster size.
For the IoT application we only scale the cluster size up to
40 nodes, because of the limited number of edge devices we

have to keep the machines busy (4 drones). Note that the
x-axis is logarithmic. The input request pattern for all ser-
vices is uniform and random, as is the popularity distribution
of users, movies, drones, etc. In general, as the size of the
cluster grows throughput increases, almost linearly at first
(up to 40-100 servers), and sublinearly beyond that. This
is more pronounced in the E-commerce service, and beyond
200 nodes in Social Network and Movie Streaming as well.
For comparison, we also show the scalability of nginx as
the number of servers increases. Unlike the DeathStarBench
services, nginx scales linearly all the way to 400 nodes. The
reason behind the suboptimal scalability of microservices in
large clusters is the fact that the end-to-end tail latency is
limited by the slowest microservice on the critical path. This
introduces a new dimension in tail at scale effects beyond
fanout to many servers [21], and needing to meet QoS across
many users, and puts even more pressure on techniques that
improve performance predictability.

The Social Network graph also includes a non-uniform,
skewed distribution, where each user’s activity and popular-
ity is extracted from the Higgs Boson Twitter dataset and
scaled down to almost saturate the 200 server EC2 clus-
ter [13]. In this case latency spikes much earlier, since the
small number of microservices responsible for the popular
users are affecting the end-to-end service’s QoS.
Request skew: To better understand the impact of skew we
now sweep the skew parameter from 0 to 100%, where skew
is defined as [100�u], with u the fraction of users initiating
90% of total requests. Fig. 20 shows that when skew is 0%,
i.e., the distribution is uniform, all services achieve their max
QPS under a tail latency QoS, for that cluster size (S = 200).
As skew starts increasing, however, goodput (throughput un-
der QoS) quickly drops, and when less than 20% of users are
responsible for the majority of requests, the goodput of the
system reaches almost zero.
Impact of slow servers: Fig. 20b show the impact a small
number of slow servers has on overall QoS at large scale.
When more than 1% of servers behave poorly, the goodput
is almost zero, as these slow servers degrade the end-to-end
QoS. Moreover, apart from degrading tail latency, a small
fraction of slow servers can degrade the latency of most re-
quests. Fig. 20c shows the probability that a request will be
slow (over QoS) as the fraction of slow servers increases.
Beyond 1% of slow servers almost all requests are degraded.

10

Figure 16: Tail latency with increasing load and decreasing frequency (RAPL)
for traditional monolithic cloud applications, and the four end-to-end Death-
StarBench services.

0 50 100 150 200 250
QPS

0
2
4
6
8

10
12

Ta
il

La
te

nc
y

(s
ec

) E-commerce

0 20 40 60 80 100
QPS

0
5

10
15
20
25

Ta
il

La
te

nc
y

(s
ec

) IoT - Cloud
Xeon
ThunderX

Figure 17: Throughput-tail la-
tency comparison between an In-
tel Xeon and a Cavium Thun-
derX server.

pecially pronounced in Social Network, and Movie Stream-
ing because of their stricter latency requirements, and E-
commerce, because it is more compute intensive. The IoT
application does not suffer as much, because it is mostly
network-limited, and the NIC is the same as in the high-end
servers. Low power machines can still be used for microser-
vices, for example by using the per-microservice character-
ization above to map microservices out of the critical path,
or insensitive to frequency scaling on low-power nodes.
I-cache pressure: Prior work has characterized the high
pressure cloud applications put on the instruction cache [26,
39]. Since microservices decompose what would be one
large binary to many loosely-connected services, we exam-
ine whether previous results on i-cache pressure still hold.
Fig. 18 shows the MPKI of each microservice in the four
end-to-end applications. We also include the backend caching
and database layers for comparison. First, the i-cache pres-
sure of nginx, memcached, and mongoDB remains high across
services, consistent with prior work. The i-cache pressure
of the remaining microservices is considerably lower, es-
pecially for E-commerce, which is expected given the mi-
croservices’ small code footprints. node.js applications out-
side the context of microservices do not have low i-cache
miss rates [60], hence we conclude that it is the simplic-
ity of microservices which results in better i-cache local-
ity. Most i-cache misses, especially in Social Network and
Movie Streaming happen in kernel mode, and based on our
analysis with vTune, are attributed to the Thrift framework.

We also examined the LLC and D-TLB misses across mi-
croservices, and found them considerably lower than for tra-
ditional cloud applications, which is consistent with the push
for microservices to be mostly stateless. This is also in agree-
ment with the recent trend towards serverless functions, where
a task can run anywhere in a disaggregated datacenter.

4. TAIL AT SCALE EFFECTS
To study the performance and efficiency issues of microser-

vices at scale, we also run DeathStarBench on a dedicated
EC2 cluster with 10 up to 400 c5.18xlarge instances (72
vCPUs, 144GB RAM each).
Cluster size: Fig. 19 shows the performance scalability of
the four end-to-end services as we increase the cluster size.
For the IoT application we only scale the cluster size up to
40 nodes, because of the limited number of edge devices we

have to keep the machines busy (4 drones). Note that the
x-axis is logarithmic. The input request pattern for all ser-
vices is uniform and random, as is the popularity distribution
of users, movies, drones, etc. In general, as the size of the
cluster grows throughput increases, almost linearly at first
(up to 40-100 servers), and sublinearly beyond that. This
is more pronounced in the E-commerce service, and beyond
200 nodes in Social Network and Movie Streaming as well.
For comparison, we also show the scalability of nginx as
the number of servers increases. Unlike the DeathStarBench
services, nginx scales linearly all the way to 400 nodes. The
reason behind the suboptimal scalability of microservices in
large clusters is the fact that the end-to-end tail latency is
limited by the slowest microservice on the critical path. This
introduces a new dimension in tail at scale effects beyond
fanout to many servers [21], and needing to meet QoS across
many users, and puts even more pressure on techniques that
improve performance predictability.

The Social Network graph also includes a non-uniform,
skewed distribution, where each user’s activity and popular-
ity is extracted from the Higgs Boson Twitter dataset and
scaled down to almost saturate the 200 server EC2 clus-
ter [13]. In this case latency spikes much earlier, since the
small number of microservices responsible for the popular
users are affecting the end-to-end service’s QoS.
Request skew: To better understand the impact of skew we
now sweep the skew parameter from 0 to 100%, where skew
is defined as [100�u], with u the fraction of users initiating
90% of total requests. Fig. 20 shows that when skew is 0%,
i.e., the distribution is uniform, all services achieve their max
QPS under a tail latency QoS, for that cluster size (S = 200).
As skew starts increasing, however, goodput (throughput un-
der QoS) quickly drops, and when less than 20% of users are
responsible for the majority of requests, the goodput of the
system reaches almost zero.
Impact of slow servers: Fig. 20b show the impact a small
number of slow servers has on overall QoS at large scale.
When more than 1% of servers behave poorly, the goodput
is almost zero, as these slow servers degrade the end-to-end
QoS. Moreover, apart from degrading tail latency, a small
fraction of slow servers can degrade the latency of most re-
quests. Fig. 20c shows the probability that a request will be
slow (over QoS) as the fraction of slow servers increases.
Beyond 1% of slow servers almost all requests are degraded.

10

10

¨ Computation:Communication ratio:
¤ Monolithic service à 70:30 @ high load
¤ Microservices à 50:50 @ high load

Architectural Implications
ng

inx
As

sig
nR

M
ov

ieI
D

Pr
oc

Te
xt

Re
vie

wI
D

Co
m

po
se

Re
vS

to
ra

ge
Us

er
Re

vie
w

M
ov

Re
vie

w
m

em
ca

ch
ed

m
on

go
DB

En
d-

to
-E

nd
M

on
oli

th

0
2
4
6
8

10
12

Ta
il

La
te

nc
y

(m
se

c)

Movie Streaming
Application proc
TCP proc (RPCs)

11

¨ Computation:Communication ratio:
¤ Monolithic service à 70:30 @ high load
¤ Microservices à 50:50 @ high load
¤ RPC/REST acceleration à NIC offloads, FPGAs

Architectural Implications

QPI

NIC

DRAM

CPU CPU

DRAM

PCIe Gen3

DRAM

QSFP

QSFP

Q
SFP

10Gbps

10Gbps

Virtex7
PCIe Gen3

12

¨ L1-i cache pressure:
¤ Monoliths à Large code footprints à L1i thrashing
¤ Microservices à Small footprint/microservice

n Assuming dedicated cores

Architectural Implications

ng
inx tex

t
im

ag
e

msg
ID

tag
Use

r

url
Sho

rte
n
vid

eo

co
mpo

se

msg
Stor

e

wrTim
elin

e

wrG
rap

h
mem

$

mon
go

db
0
5

10
15
20
25
30
35
40

L1
i M

PK
I

Social Network

ng
inx

as
sig

nR

mov
ieI

D

pro
cT

ex
t

rev
iew

ID

Com
po

se

rev
iew

Stor
e

us
erR

ev

mov
ieR

ev

str
ea

m

bro
wse

Inf
o

mem
$

mon
go

db
0

10

20

30

40

50

L1
i M

PK
I

Movie Streaming

Figure 18: L1-i cache misses in the E-commerce service.

Figure 19: Microservices scalability on a dedicated cluster on EC2 as the number of servers increases.

Figure 20: Tail at scale effects from request skew, and
slow servers.

We can confirm these experimental data following the rea-
soning of the Tail At Scale paper [21]. For latency to be
nominal (below QoS) every microservice along the critical
path must be fast. If s% of servers are slow, the probability
for a nominal latency request is: Pr = ’M

n=1(100�s), where
M the microservices on the critical path. Since each end-to-
end service has hundreds of inter-dependent microservices
at scale, the probability for a request with nominal latency
is almost zero. Finally, we compare the four end-to-end ser-
vices with an application where each microservice operates
independently (Split services). In that case the probability
that a request is slow is much smaller, since slow requests in
one microservice do not affect the overall QoS. The larger
the cluster and/or the service’s complexity and dependency
graph, the more pronounced these effects become, highlight-
ing the need for design and management systems that fo-
cus on improving performance predictability, and can dis-
tinguish between critical and auxiliary dependencies across
microservices when managing resources.

5. RELATED WORK & DEATHSTARBENCH
ADOPTION

Cloud benchmark suites: Cloud applications have attracted
a lot of attention over the past decade, with several bench-
mark suites being released both from academia and indus-
try [26, 31, 38, 60, 57]. Cloudsuite for example, includes
both batch and interactive services, such as memcached, and
has been used to study the architectural implications of cloud
benchmarks [26]. Similarly, TailBench aggregates a set of
interactive benchmarks, from web servers and databases to
speech recognition and machine translation systems and pro-
poses a new methodology to analyze their performance [38].
Sirius also focuses on intelligent personal assistant work-

loads, such as voice to text translation, and has been used
to study the acceleration potential for interactive ML appli-
cations [31]. A limitation of current cloud benchmark suites
is that they do not reflect how services are architected to-
day, namely as multi-tier applications, and to their extreme,
microservices. For example, even applications like web-
search which is a classic multi-tier workload, are configured
as independent leaf nodes, which does not capture correla-
tions across tiers, deviates from the way these services are
deployed in production, and prevents studying the system
problems that stem from inter-dependent applications.
DeathStarBench adoption: DeathStarBench address this
limitation, and additionally tackles the emerging field of mi-
croservices, which although popular in industry has not been
actively researched, in part because of the lack of representa-
tive end-to-end cloud and IoT applications. DeathStarBench
is currently used by several academic institutions as well as
companies working, or considering switching to microser-
vices, including companies working on cluster management
that support Twitter, AT&T, Uber, Netflix, etc. So far users
are leveraging the benchmark suite to study the challenges of
serverless compute frameworks, the scalability of new fea-
tures before rolling them out in production, and the potential
of hardware acceleration for serverless microservices. The
fact that the suite is used not only by academics but in in-
dustry as well, despite the availability of production appli-
cations, showcases the value of having representative and
easy-to-set-up open-source microservices. We hope that by
releasing DeathStarBench to a wider audience we can foster
more research in this emerging field.

6. CONCLUSIONS
We have presented DeathStarBench, a novel, open-source

suite for cloud and IoT applications built with microservices.
DeathStarBench includes representative services, such as so-
cial networks, video streaming, e-commerce, and swarm con-
trol services. We use DeathStarBench to study the implica-
tions microservices have on datacenter design and manage-
ment, quantify their tail-at-scale effects as clusters grow in
size, and services become more complex, and show that mi-
croservices put increased importance in network processing
acceleration, and single-thread performance.

11

ng
inx

as
sig

nR

mov
ieI

D

pro
cT

ex
t

rev
iew

ID

Com
po

se

rev
iew

Stor
e

us
erR

ev

mov
ieR

ev

str
ea

m

bro
wse

Inf
o

mem
$

mon
go

db
0

10

20

30

40

50

L1
i M

PK
I

Movie Streaming

fro
nte

ndlog
in

ord
ers
se

arc
h
ca

rt

wish
list

ca
tal

og
ue

rec
om

men
d

sh
ipp

ing

pa
ym

en
t

inv
oic

e

qM
as

ter
mem

$

mon
go

db
0
5

10
15
20
25
30
35
40
45

L1
i M

PK
I

E-Commerce

ng
inx

co
ntr

olle
r

crR
ou

te

moti
on

Ctrl

im
gR

ec
og

n

ob
stA

vo
id

mon
go

db
0
5

10
15
20
25
30
35
40

L1
i M

PK
I

IoT - Cloud Compute

Figure 18: L1-i cache misses in the E-commerce service.

Figure 19: Microservices scalability on a dedicated cluster on EC2 as the number of servers increases.

Figure 20: Tail at scale effects from request skew, and
slow servers.

We can confirm these experimental data following the rea-
soning of the Tail At Scale paper [21]. For latency to be
nominal (below QoS) every microservice along the critical
path must be fast. If s% of servers are slow, the probability
for a nominal latency request is: Pr = ’M

n=1(100�s), where
M the microservices on the critical path. Since each end-to-
end service has hundreds of inter-dependent microservices
at scale, the probability for a request with nominal latency
is almost zero. Finally, we compare the four end-to-end ser-
vices with an application where each microservice operates
independently (Split services). In that case the probability
that a request is slow is much smaller, since slow requests in
one microservice do not affect the overall QoS. The larger
the cluster and/or the service’s complexity and dependency
graph, the more pronounced these effects become, highlight-
ing the need for design and management systems that fo-
cus on improving performance predictability, and can dis-
tinguish between critical and auxiliary dependencies across
microservices when managing resources.

5. RELATED WORK & DEATHSTARBENCH
ADOPTION

Cloud benchmark suites: Cloud applications have attracted
a lot of attention over the past decade, with several bench-
mark suites being released both from academia and indus-
try [26, 31, 38, 60, 57]. Cloudsuite for example, includes
both batch and interactive services, such as memcached, and
has been used to study the architectural implications of cloud
benchmarks [26]. Similarly, TailBench aggregates a set of
interactive benchmarks, from web servers and databases to
speech recognition and machine translation systems and pro-
poses a new methodology to analyze their performance [38].
Sirius also focuses on intelligent personal assistant work-

loads, such as voice to text translation, and has been used
to study the acceleration potential for interactive ML appli-
cations [31]. A limitation of current cloud benchmark suites
is that they do not reflect how services are architected to-
day, namely as multi-tier applications, and to their extreme,
microservices. For example, even applications like web-
search which is a classic multi-tier workload, are configured
as independent leaf nodes, which does not capture correla-
tions across tiers, deviates from the way these services are
deployed in production, and prevents studying the system
problems that stem from inter-dependent applications.
DeathStarBench adoption: DeathStarBench address this
limitation, and additionally tackles the emerging field of mi-
croservices, which although popular in industry has not been
actively researched, in part because of the lack of representa-
tive end-to-end cloud and IoT applications. DeathStarBench
is currently used by several academic institutions as well as
companies working, or considering switching to microser-
vices, including companies working on cluster management
that support Twitter, AT&T, Uber, Netflix, etc. So far users
are leveraging the benchmark suite to study the challenges of
serverless compute frameworks, the scalability of new fea-
tures before rolling them out in production, and the potential
of hardware acceleration for serverless microservices. The
fact that the suite is used not only by academics but in in-
dustry as well, despite the availability of production appli-
cations, showcases the value of having representative and
easy-to-set-up open-source microservices. We hope that by
releasing DeathStarBench to a wider audience we can foster
more research in this emerging field.

6. CONCLUSIONS
We have presented DeathStarBench, a novel, open-source

suite for cloud and IoT applications built with microservices.
DeathStarBench includes representative services, such as so-
cial networks, video streaming, e-commerce, and swarm con-
trol services. We use DeathStarBench to study the implica-
tions microservices have on datacenter design and manage-
ment, quantify their tail-at-scale effects as clusters grow in
size, and services become more complex, and show that mi-
croservices put increased importance in network processing
acceleration, and single-thread performance.

11

13

¨ Post-rightsizing (resource ratios to avoid glaring bottlenecks)
¨ Bottlenecks shift with load

¨ Need online, dynamic decisions

End-to-End Latency Breakdown

14

Resource Management Implications

¨ Challenges of microservices:
¤ Change server design assumptions
¤ Dependencies complicate resource management

Netflix Twitter Amazon Movie Streaming

15

Dependencies & Backpressure

nginx mem$ http1
read <k,v>

nginxnginxnginxnginxnginxnginxnginx

16

¨ Traditional techniques like autoscale may help/penalize the
wrong microservice

¨ Dependencies change at runtime à difficult to infer impact

Dependencies & Backpressure

nginx mem$

nginx mem$

http1

http2

read <k,v>

memmemmemmemmem$nginxnginxnginxnginxnginxnginxnginxnginx

RX RXTX

17

¨ Queueing models

¨ Queueing network simulation
¤ Complex microservices graphs, blocking, cyclic dependencies, etc.

Determine Per-Tier QoS

mem$nginx

QoS1

Q
oS

2

18

¨ Two types of latency slack:
¤ Microservices off the critical path
¤ Microservices on the critical path with relaxed QoS

Power Management for Microservices

Frequency

End-to-end Latency

Utilization

2.2GHz

QoS

0

100

Frequency

End-to-end Latency

Utilization

Frequency

End-to-end Latency

Utilization

time time time

19

¨ Determine per-tier QoS for 1000s of microservices
à intractable

¨ Put visceral graph here…

Scalability Challenges

20

¨ Microservices add an extra dimension to tail at scale effects
¤ A single slow microservice affects end-to-end latency
¤ Much more pressure on performance predictability & availability
¤ Monitoring at the edge

¨ Determining per-tier QoS for 10000s of microservices is
intractable
¤ Scalable data-driven approach

¨ Need for online performance debugging

Tail at Scale Effects

21

¨ Dependencies between microservices à propagate & amplify
QoS violations
¤ Finding the culprit of a QoS violation is difficult
¤ Post-QoS violation, returning to nominal operation is hard

¨ Anticipating QoS violations & identifying culprits

¨ Seer: Data-driven Performance Debugging for Microservices
¤ Combines lightweight RPC-level distributed tracing with hardware

monitoring
¤ Leverages scalable deep learning to signal QoS violations with

enough slack to apply corrective action

Proactive Performance Debugging

22

Performance Implications
CPU Mem Net DiskQueue

23

Performance Implications
CPU Mem Net DiskQueue

24

¨ Leverage the massive amount of traces collected over time

1. Apply online, practical data mining techniques that
identify the culprit of an upcoming QoS violation

2. Use per-server hardware monitoring to determine the
cause of the QoS violation

3. Take corrective action to prevent the QoS violation from
occurring

¨ Need to predict 100s of msec – a few sec in the future

Seer: Data-Driven Performance Debugging
[HotCloud’18]

25

¨ RPC level tracing
¨ Based on Apache Thrift

¨ Timestamp start-end
for each microservice

¨ Store in centralized DB
(Cassandra)

¨ Record all requests à
No sampling

¨ Overhead: <0.1% in
throughput and <0.2%
in tail latency

Tracing
Collector

WebUI

Client

http

Cassandra

QueryEngine

[…]

m
ic

ro
se

rv
ic

es

latency

Gantt charts

zTracer

TCP

TCP

Proc

uService K
RPC timeTX

zTracer

TCP

TCP

Proc

uService K+1

RPC timeRX

TCP procTX

TCP procRX

App proc

[…]

Tracing Framework

26

¨ Why?
¤ Architecture-agnostic
¤ Adjusts to changes in

dependencies over
time

¤ High accuracy, good
scalability

¤ Inference within the
required window

Deep Learning to the Rescue

27

¨ Container
utilization

¨ Latency

¨ Queue
depth

DNN Configuration

Output
signal

Which
microservice
will cause a

QoS violation
in the near

future?

Input
signal

28

¨ Container
utilization

¨ Latency

¨ Queue
depth

DNN Configuration

Output
signal

Which
microservice
will cause a

QoS violation
in the near

future?

Input
signal

29

¨ Training once: slow (hours - days)
¤ Across load levels, load distributions, request types
¤ Distributed queue traces, annotated with QoS violations
¤ Weight/bias inference with SGD
¤ Retraining in the background

¨ Inference continuously: streaming trace data

DNN Configuration

93% accuracy in signaling upcoming
QoS violations

91% accuracy in attributing QoS
violation to correct microservice

30

¨ Challenges:
¤ In large clusters inference too slow to prevent QoS violations
¤ Offload on TPUs, 10-100x improvement; 10ms for 90th %ile

inference
¤ Fast enough for most corrective actions to take effect (net bw

partitioning, RAPL, cache partitioning, scale-up/out, etc.)

DNN Configuration

Accuracy stable or increasing with cluster size

31

¨ 40 dedicated servers
¨ ~1000 single-concerned

containers
¨ Machine utilization 80-85%

¨ Inject interference to cause
QoS violation
¤ Using microbenchmarks

(CPU, cache, memory,
network, disk I/O)

Experimental Setup

32

¨ Identify cause of QoS violation
¤ Private cluster: performance counters & utilization monitors
¤ Public cluster: contentious microbenchmarks

¨ Adjust resource allocation
¤ RAPL (fine-grain DVFS) & scale-up for CPU contention
¤ Cache partitioning (CAT) for cache contention
¤ Memory capacity partitioning for memory contention
¤ Network bandwidth partitioning (HTB) for net contention
¤ Storage bandwidth partitioning for I/O contention

Restoring QoS

33

Demo CPU Mem Net DiskQueue

34

35

A New Cloud Stack

Applications

Programming frameworks

Cluster management

Hardware design

CAL’18a

CAL’18b,
HotCloud’18,
in submission

in submission

in submission

36

A New Cloud Stack

Applications

Programming frameworks

Cluster management

Hardware design

CAL’18a

CAL’18b,
HotCloud’18,
in submission

in submission

in submission
Thank you!

