
Who Limits the Resource Efficiency of My Datacenter: An
Analysis of Alibaba Datacenter Traces

Jing Guo∗
SKL Computer Architecture, ICT, CAS
University of Chinese Academy of

Sciences

Zihao Chang∗
SKL Computer Architecture, ICT, CAS
University of Chinese Academy of

Sciences

Sa Wang
SKL Computer Architecture, ICT, CAS
University of Chinese Academy of

Sciences

Haiyang Ding
Alibaba Inc.

Yihui Feng
Alibaba Inc.

Liang Mao
Alibaba Inc.

Yungang Bao
SKL Computer Architecture, ICT, CAS
University of Chinese Academy of

Sciences

ABSTRACT
Cloud platform provides great flexibility and cost-efficiency for
end-users and cloud operators. However, low resource utilization
in modern datacenters brings huge wastes of hardware resources
and infrastructure investment. To improve resource utilization, a
straightforward way is co-locating different workloads on the same
hardware. To figure out the resource efficiency and understand the
key characteristics of workloads in co-located cluster, we analyze
an 8-day trace from Alibaba’s production trace. We reveal three
key findings as follows. First, memory becomes the new bottleneck
and limits the resource efficiency in Alibaba’s datacenter. Second,
in order to protect latency-critical applications, batch-processing
applications are treated as second-class citizens and restricted to
utilize limited resources. Third, more than 90% of latency-critical
applications are written in Java applications. Massive self-contained
JVMs further complicate resource management and limit the re-
source efficiency in datacenters.

CCS CONCEPTS
• Computer systems organization→ Cloud computing.

KEYWORDS
Resource efficiency, cloud computing, datacenter

ACM Reference Format:
Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang Mao,
and Yungang Bao. 2019. Who Limits the Resource Efficiency of My Datacen-
ter: An Analysis of Alibaba Datacenter Traces. In IEEE/ACM International
Symposium on Quality of Service (IWQoS ’19), June 24–25, 2019, Phoenix, AZ,

∗Work done while interning at Alibaba Inc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6778-3/19/06. . . $15.00
https://doi.org/10.1145/3326285.3329074

USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3326285.
3329074

1 INTRODUCTION
The huge cost of investment with low resource utilization has
long been a great concern to cloud providers. Early in 2012, [24]
revealed that the average CPU and memory utilization in Google’s
production cluster were only 20% and 40% respectively. Nearly
at the same time, the average CPU utilization of Amazon AWS
EC2 was only 7% to 17% [17]. Since then, industry and academia
have both devoted much effort to improve resource efficiency in
datacenters [5, 7, 19].

However, the major obstacle to further improve resource effi-
ciency is the performance interference brought by co-located work-
loads. The more workloads we co-locate on the same hardware, the
more likely each workload suffers performance interference from
each other [3, 19, 31]. The uncertainty of performance interference
makes things even more complicated and highly reduces the Qual-
ity of Service (QoS) provided by cloud providers. How to improve
the resource efficiency while guaranteeing the QoS of workloads
becomes a great challenge to cloud providers.

To address this issue, some prior works [7, 9] attempt to exploit
an efficient co-location and resource allocation strategy for appli-
cations before launching. One of the widely accepted strategies
is prioritizing latency-critical (LC) applications and co-locating
batch-processing applications to harness stranded CPU cycles [19].
Batch-processing applications could be deferred or evicted when
any performance spike happens to the co-located LC applications.
Some studies seek to adjust resource allocation dynamically dur-
ing application’s execution, such as increasing the cache size of
applications [19], or even rescheduling the tasks with lower prior-
ity when needed [7]. Resource allocation and dynamic adjustment
are orthogonal techniques and can be adopted simultaneously in
datacenters for higher resource efficiency.

In this paper, we ask the following question: after years of en-
deavor, how is it going in production datacenters now? How about
the resource efficiency of today’s datacenters? Fortunately, Alibaba
released a new Trace (AT) from their production cluster recently.
The AT consists of 4K machines, 9K different services and 4M batch

https://doi.org/10.1145/3326285.3329074
https://doi.org/10.1145/3326285.3329074
https://doi.org/10.1145/3326285.3329074


IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Jing Guo and Zihao Chang, et al.

jobs with static and runtime information over 8 days. Comparing to
the Google trace released in 2011, AT exhibits several new charac-
teristics and trends which we believe could shed some lights on the
resource management in datacenters, especially those confronting
Java workloads. Our key findings are summarized as follow:

Memory becomes the new bottleneck of datacenters. In Al-
ibaba’s cluster, memory seemingly becomes the new bottleneck
that prevents co-locating more workloads on one physical server,
whereas there still left considerable spare CPU cycles. The state-
of-the-art on improving resource efficiency of datacenters mainly
focus on CPU utilization of servers [6, 8]. However, we observe that
the average resource utilization of CPU and memory in AT turn out
to be 38.2% and 88.2% respectively, and some nodes nearly run out of
memory. As we further analyze the breakdown of memory utiliza-
tion in §4, we discover that Alibaba uses a conservative approach
to allocate resource to LC applications instead of fine-grained allo-
cation. LC applications reserve massive CPU and memory resource
in case of performance spike happens. Meanwhile, in each physical
host, memory is statically partitioned into several regions and appli-
cations (LC and batch) are only allowed to request memory in their
own regions. Due to the lack of efficientmemory reclaim techniques,
the memory stranded by LC applications can not reallocate to other
jobs. The static memory management and conservative resource
allocation greatly affects the resource efficiency of datacenters.

Batch-processing applications can only conservatively har-
vest limited amount of resources.Batch-processing applications
are always treated as second-class citizens in prior works [7, 19].
How about their de facto resource utilization in production data-
centers? We find out that they are subject to even worse treatments
in Alibaba trace. Batch-processing applications mainly follow three
principles to make compromise to LC applications. (1) They can
only utilize pre-defined limited amount of resource with lower pri-
ority. (2) They are the only applications suffering from rescheduling
in any case. (3) They are restricted to harvest limited amount of
resources in daytime, though there left remarkable spare resource.
The majority of batch workloads are launched at midnight, which
is of an order of magnitude larger than the amount of workload in
daytime. Those three principles directly put batch-processing appli-
cations in chains, which overprotects latency-critical applications
and hurts the resource efficiency of datacenters.

Massive self-contained JVMs further complicate resource
management in datacenters. In AT, more than 90% of LC and
some batch-processing applications are written in Java. Accord-
ingly, they will launch thousands of Java virtual machines (JVMs)
that are separated from each other and manage resource by their
own automatically. Co-locating so many self-contained JVMs will
cause at least two issues. (1) The unpredictable performance inter-
ference caused by the well-known garbage collection (GC) in JVMs
will exacerbate. Unfortunately, we can only overprovision enough
memory indirectly for each container to lower the frequency of
GC. It further reduces the resource efficiency. (2) The potentially
reserved but stranded memory resource will scale up, due to the
lack of efficient techniques to reclaim and reallocate memory in
JVMs to other applications. Since LC applications in Alibaba are en-
capsulated into containers, dynamically managing memory means
holistically coordinating between JVMs, containers and underlying

host systems to reclaim and reallocate stranded memory. It further
complicates resource management in datacenters.

In a nutshell, this work makes the following contributions:

• We analyze the characteristics of co-located workloads and
resource efficiency of Alibaba’s cluster from two perspec-
tives, resource allocation and adjustment.

• Based on the observation, we extract three key insights and
believe our findings will be applicable to future research.

• We introduces two metrics to quantify the compromise im-
pact of batch-processing applications, Reschedule Time Cost
(RTC) and Reschedule time cost Over execution Time (ROT ).

• We propose a periodic GC adaptive mechanism to exploit
memory resource stranded by LC applications.

The rest of the paper is organized as follows: Section 2 introduces
background and related work. Section 3 presents an overview of
Alibaba’s new trace, cluster overall usage and workload character-
istics. Section 4 and 5 describe the resource efficiency of Alibaba’s
datacenter from two perspectives, resource allocation and adjust-
ment. Section 6 further discusses two topics about how to further
improve resource usage in datacenter.

2 BACKGROUND AND RELATEDWORK
This section presents the motivation for workload characterization,
state-of-the-art cluster management systems and then describes
the architecture of Alibaba’s cluster management system.

2.1 Workload characterization
Co-locating multiple workloads on the same hardware is a straight-
forward approach to achieve high resource efficiency, but brings
severe resource contention [31]. Such contention leads to unpre-
dictable performance variability and highly reduces the QoS of
user-facing services [19]. Therefore, co-location makes things more
complicated in how to improve the resource efficiency while guar-
anteeing the QoS of workloads.

To better face this issue, it is necessary to understand the key
characteristics of workloads from real production environment. In
2011, Google released a public dataset from their production cluster,
presenting a 29-day trace of co-located workloads [25]. Reiss et
al. [24] thoroughly characterize the workloads in resource needs,
utilization and resource assignment. [1] investigates the resource
usage of Google cluster from user behavior. Besides, another line
of works characterize the workloads in VM-based datacenters. [5]
presents a detailed analysis of VM workloads behaviors from Azure.
[2] provides a view from private clouds in application characteris-
tics. These efforts provide a broad perspective and help us better
understand the various task shapes in large-scale datacenters.

In 2017, Alibaba, the largest cloud service provider in China,
released a publicly accessible dataset. It consists of 1.3K machines
that run both LC and batch-processing applications in a 12-hour
period [11]. Recent studies have analyzed the characteristics of co-
located cluster from multiple perspectives. Lu et al. [20] analyzed
the imbalance phenomenon in the cluster. Liu et al. [18] focused on
the elasticity and plasticity of their semi-containerized cloud. And
[4] provided a unique view about how the co-located workloads
interact and interfere with each other.



Who Limits the Resource Efficiency of My Datacenter IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

!"#$%&%'()*
!+%*) '(%()

,-." &%'()*
!+%*) '(%()

!"#"$%&'
()*+,)$$",

!"#"$%&'
-.+.

!"#"$%&'
/0"*+

!"#$%/0#)1( ,-." 0#)1(

!"#"$1
2,.3"4),5

6".,78

!"#"$9'2,.3"4),5

-: ;+8",<== >.?()3@A+" ;+8",<===

6",#",

B)A*78

;*$C*"'6",#C7"<

:.+78'D)E<

Figure 1: The architecture of Alibaba cluster management
system.

In this paper, we analyse a new trace [12] released by Alibaba in
late 2018 with larger scale and longer period. It’s the first publicly
available dataset with precise information about the category of LC
and batch applications. Based on the new trace, we provide a more
comprehensive and microscopic view of the current practice about
resource usage and resource allocation. Different from the prior
works [4, 18, 20], this work mainly focuses on resource efficiency
of Alibaba’s production cluster.

2.2 Cluster management systems
With the respect of availability and scalability, cluster management
systems (CMS) play a key role in co-locating LC applications with
batch jobs. A series of state-of-the-art CMSes like Borg [28] and
Quasar [7] adopt an elaborate centralized scheduler for resource
allocation and job placement. Two-level CMSes such as Mesos [10]
uses a thin resource manager layer that allows multiple computing
frameworks to share resources. Share state CMSes like Omega [26]
allows multiple schedulers have a view of the entire cluster. Dis-
tributed CMSes such as Sparrow [23] makes random scheduling
decisions for short batch jobs to achieve high throughput.

As for Alibaba, unlike the CMSes we discussed above, they use a
hybrid of two-level and share-state architecture to manage resource
and two different workloads. At the beginning, it’s online and
batch applications are running separately in different clusters. The
batch-workload cluster achieves high CPU utilization that more
than 75%, while online-service cluster exhibits only about 10%, on
average [13]. To improve resource efficiency, therefore, Alibaba
co-located online services with batch jobs. As shown in figure 1,
level1 has two schedulers: Sigma [13] and Fuxi [30], each one has its
own resource pool. Sigma is responsible for managing user-facing,
long-running online services, which are running in containers.
Fuxi manages batch jobs, which are directly running on physical
hosts. Meanwhile, in order to obtain global view and make better
scheduling decisions, Sigma and Fuxi share the state of the entire
cluster. This hybrid architecture has been verified to be a successful
design by China’s biggest Shopping Festival in 2017 and 2018. It is
worth noting that the co-located cluster is Alibaba’s internal private
cloud rather than the public cloud Aliyun.

Because of some historical reasons, they did not redesign a new
scheduler. Instead, they used a coordinated way tomanage two inde-
pendent schedulers and unified the resource pool. Level-0 controller
is a central scheduler, which is responsible for resource manage-
ment, data transfer and communication between Sigma and Fuxi.
Level2 is on top of level1, consists of multiple business frameworks
such as DB, search engine and compute.

3 CLUSTER TRACE OVERVIEW
This section describes the Alibaba’s new trace, overall cluster usage
compared with the resource usage in 2017. And then presents the
characteristics of workloads in co-located cluster that observed
from the dataset.

3.1 Dataset
The new released trace [12] contains larger scale of machines and
longer period. It consists of 4K machines, 9K online services and
4M batch jobs with static and runtime information over 8 days. The
dataset contains three separate traces, i.e., servers, online services
and batch jobs. Each trace contains two files, meta file records basic
information and usage file stores the runtime data.

Servers. The dataset contains 4Kmachines. Themeta file records
machine ID, status, specifications and disaster level. Machine has
two states, USING indicates that the machine is in using and IM-
PORT_INSTALLING means is is being imported (e.g. installing oper-
ating system). Unlike the heterogeneity in Google’s machines [24],
all server’s specifications are same in the trace with 96 cores and
1 unit memory normalized. The usage file records the runtime
resource usage, including CPU, Memory, Network, IO and MPKI.

Online services. As an e-commerce company, Alibaba’s online
services are mainly user-facing, long-running applications, such as
search engine, online shopping and advertising. All of these services
are running in containers and scaled across thousands of servers
with strict Service Level Objectives (SLO) in tail latency. Each on-
line service has two or more containers, which are scheduled on
different hosts. Meanwhile, the containers of different services are
co-located with each other on the same physical host. Besides, the
majority of online services are written in Java, making up to more
than 90% services and containers. It forms a huge Java applications
cluster.

In the dataset, the meta file contains static information of con-
tainers such as status, its owner service, resource needs and the
host where the container is running on. Container status includes
Allocated, Started, Stopped and Unknown. Allocated indicates the
container is in resource allocation stage; Started implies container
is running; Stopped means it’s stopped; Unknown indicates some un-
known errors happened. The usage file stores the runtime resource
usage of containers, including CPU, memory, Network, etc.

Batch Jobs. Batch jobs such asMapReduce andmachine learning
are submitted by internal users. They are all non-production jobs,
directly running on physical host. Batch jobs can be described by
a ’Job-Task-Instance’ model. Each submitted job will be split into
multiple tasks with different computing logic. There are 12 different
types of tasks and some of them can be expressed by a Directed
Acyclic Graph (DAG) according to the computation dependency.
Therefore, the completion time of a job is determined by all of



IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Jing Guo and Zihao Chang, et al.

0 1 2 3 4 5 6 7
Time(days)

0
500

1000
1500
2000
2500
3000
3500
4000

M
ac
hi
ne

 ID

0

20

40

60

80

(a) CPU usage.

0 1 2 3 4 5 6 7
Time(days)

0
500

1000
1500
2000
2500
3000
3500
4000

M
ac
hi
ne

 ID

0

20

40

60

80

(b) Memory usage.

Figure 2: Moving 15-minutely average of CPU and memory
utilization. Black point means missing data.

0% 20% 40% 60% 80% 100%
CPU usage

5%
10%
15%
20%
25%
30%
35%
40%

Fr
ac
tio

n 
of
 ti
m
e

(a) Average CPU usage.

0% 20% 40% 60% 80% 100%
Memory usage

10%
20%
30%
40%
50%
60%
70%
80%

Fr
ac
tio

n 
of
 ti
m
e

(b) Average Memory usage.

Figure 3: Average resource usage of all machines, aggregat-
ing every 10 second.

0 2 4 6 8 10 12 14 16 18 20 22 24
Time(hours)

20%
30%
40%
50%
60%
70% Day1

Day2
Day3
Day4
Day5
Day6
Day7
Day8

Figure 4: Machine average CPU usage in 8 days.

its tasks. Each task contains at least one instance, the smallest
scheduling unit in Fuxi. Besides, each instance of the same task has
same binary code and resource needs. Similarly, the duration of a
task depends on all of its instances. This dataset includes 4 million
batch jobs, 14 million tasks and 1.4 billion instances.

The meta file records basic information such as task type, start
and finish time, DAG dependency, the amount of instance and
planed resource. Each record in usage file indicates one instance ex-
ecution information, including resource usage and final state. Failed
state means the instance dose not run successfully; Interrupted im-
plies it’s failed without completion; Ready indicates the it’s failed
when ready to run; Running means it’s failed when running (such
as terminated by user), while only Terminated state implies the
instance is completed. An instance may fail due to various reasons
(e.g. resource insufficient or machine failures). However, details are
not provided in the dataset.

1 2 4 8 16 32 64 128 256 512
#container

0%
20%
40%
60%
80%

100%

CD
F

101

#service
99% service

(a) Number of containers per-service.

100 101 102 103 104 105 106

Duration(seconds)
0%

20%
40%
60%
80%

100%

CD
F

Job
Task
Instance
99% Job
99% Task
99% Instance

(b) Batch job, task and instance durations.

0 1 2 3 4 5 6 7 8
Time(days)

0
1
2
3
4
5
6

03:00

03:00
#instance(1M) #task(10K) #job(10K)

(c) Number of batch job, task and instance arrived by time.

Figure 5: (a) The number of containers per-service. (b) The
CDF of batch job, task, and instance durations. (c) The num-
ber of batch job, task and instance arrived by time.

3.2 Overall Usage
We first analyse the overall resource usage of Alibaba cluster. From
the dataset, all machines have the same specification of 96 cores and
1 unit memory normalized. Figure 2 shows the heatmap of machine-
level resource usage over 8 days trace period. Each horizontal stripe
corresponding to one machine, and memory seems achieve more
higher resource utilization than CPU. From Figure 3 we can observe
that the average CPU utilization of entire cluster is between 20%-
50% in majority of the time, while average memory utilization is
above 80% all the time and is almost fully utilized. Besides, we can
find out the average CPU usage exhibits strong periodicity, which is
clearly shown in Figure 4. Everyday it has a peak at 06:00 and then
gradually declines, implying the accurate prediction is possible.

Different from the old trace in 2017, the new trace indicates
Alibaba’s cluster achieved higher resources efficiency. Surprisingly
the improvement of memory usage are much larger than CPU, from
50% [4] to more than 80%. At cluster level, the average utilization
of CPU and memory are 38.2% and 88.2%, respectively. The cluster
is nearly run out of memory. Besides, a common occurrence in
the cluster is that a large number of batch jobs are queued
with sufficient CPU resources, but they cannot be scheduled
due to lack of memory1. It seems that memory shortage has
became the main obstacle preventing co-locating more workloads
on one physical server. And this phenomenon further limits the
CPU efficiency of datacenter.
1This phenomenon is confirmed by Alibaba engineers.



Who Limits the Resource Efficiency of My Datacenter IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

(a) CPU usage. (b) Memory usage.

Figure 6: Boxplot of CPU and memory utilization distribu-
tions for three regions. The horizontal line in the each box-
plot shows the median. The boundaries of the boxplots de-
pict the 25th and 75th percentiles, the whiskers indicate the
5th and 95th percentiles.

3.3 Characteristics
Workload heterogeneity. The diversity applications are now a
nature feature in modern datacenters [8] and it exacerbates the
heterogeneity of workloads. We make the following observations:
(1) There is a great variety of workloads of online and batch applica-
tions. In the dataset, batch jobs are submitted by internal users and
the ’Job-Task-Instance’ model highly increases the diversity of batch
jobs. Moreover, there are 9K different online services, which are
all end-user-facing applications. (2) The online services and batch
tasks are have various resource requirements, and the containers of
the same service may configured with different specifications. The
number of containers for each service is clearly shown in Figure
5(a). The thousands of applications make resource allocation an
arduous task. (3) The various online services are with diverse SLO
in tail latency. Based on the observations, the workload hetero-
geneity brings great challenge to resource allocation in co-located
cluster, while guaranteeing the performance of online services and
achieving high resource efficiency.

Majority of batch jobs are small and short. Data analytics
frameworks such asMapReduce are runningmany short (seconds to
minutes) jobs. In AT, majority of batch jobs are small and short with
various resource needs. As shown in Figure 5(b), more than 50% of
batch jobs, tasks and instances are finished within 10 seconds, while
some are within sub-second. Therefore, Fuxi are designed to sup-
port high throughput and low scheduling latency, while ensuring
placement quality. Besides, compared to the long-running online
services, the high throughput of batch jobs brings high dynamic of
cluster, which can further improve resource efficiency.

Diurnal and nocturnal patterns. Some studies have found out
that user’s activity follows diurnal pattern and clusters received
more requests and batch jobs at daytime [2]. In the dataset, online
services and batch jobs also follow diurnal and nocturnal patterns.
Because of user’s behavior, user-facing services are more active
during the day, while batch jobs are reverse with high arrival rate
at midnight. In order to improve resource usage, Fuxi will sched-
ule more batch jobs to co-located cluster at midnight, while lower
batch jobs during the day to protect LC application’s performance.
As shown in Figure 5(c), batch job has a high arrival rate at 03:00
everyday and then gradually declines. Although diurnal and noc-
turnal patterns can better exploits the available resources in day

0 500 1000 1500 2000 2500 3000 3500 40000
50

100
150
200
250

300

# 
of
 c
or
es

CPU capacity(96)

CPU limit
CPU request
CPU utilization

(a) CPU

0 500 1000 1500 2000 2500 3000 3500 40000

20

40

60

M
em

or
y 
ra
tio

(%
) Memory size

Memory utilization

(b) Memory

Figure 7: Resource reserved for online services in each ma-
chine. X-axis represents themachines which is sorted by the
number of CPUs/Memory request. (a) shows CPU request,
limit and average utilization. The horizontal dashed line in-
dicates the CPU capacity of one physical host; (b) shows
memory reserved and used by containers on each machine.

level, it impacts the load varies of cluster. The uncertainty of user’s
access and high throughput of batch jobs brings unpredictability
in resource interference, which further complicates the resource
management in co-located cluster.

4 RESOURCE ALLOCATION
As we analyzed in Section 3, memory seemingly becomes the new
bottleneck and limits the resource efficiency of datacenter. In this
section, we further decompose this phenomenon from the view of
resource allocation.

According to the types of workloads running on, we partition
the cluster into three regions, i.e., batch jobs only, LC applications
only and co-located regions. To explore the impact of co-location
on resource usage, we calculate the distribution of resource uti-
lization for these three areas. As shown in Figure 6, we observe
that batch only and LC only regions’ CPU utilizations are signif-
icantly lower than that of co-located region. Batch only region’s
average memory utilization is lower than others. Co-located area
achieves higher resource efficiency. Because LC and batch jobs are
all sensitive to resource allocations [3], how to allocate resource
to them remains a problem. Conservative allocation will hurt the
throughput for batch jobs, while optimistic allocation will cause
unpredictable performance variability for LC services [19]. Below,
we describe how Sigma and Fuxi allocate resource to LC applica-
tions and batch jobs, and static memory partition in detail. And
then present how this hybrid allocation method limits the resource
efficiency of datacenter.



IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Jing Guo and Zihao Chang, et al.

4.1 CMS resource allocation
Conservative allocation. In order to guarantee the QoS of LC
applications, a common approach is reserving ample resources for
them [7]. Sigma takes this method to allocate sufficient resources
for each container. It is a kind of over-provisioning and we called
conservative allocation. As shown in Figure 7, we calculate the per-
machine’s resource requested by online services. Resource of CPU
has two values, one is request (requested by container) and another
is limit (maximumCPU container can use). We observe that the sum
of CPU cores requested by online services is almost equal to total
capacity of cluster (94.2% average) and 37% memory resources are
reserved by them. However, these applications’ CPU usage is very
low (9.5% average) with only few moment achieve high efficiency.
Containers’ memory utilization is higher (80.6% average), because
of the feature of JVM. With the respect of resource efficiency, some
servers’ CPU are oversold to improve usage. As a compressible
resource, CPU can be effectively used by other jobs through CPU
share or priority-based scheduling. Things are different to memory
resource. In Alibaba, the majority of containers’ JVM configuration
of minimum memory size for pile and heap (xms) and maximum
memory size for pile and heap (xmx) are equal. Besides, due to the
lack of memory reclaim technology, these memory will be always
stranded in container’s lifecycle. Although when unpredictable
bursty spike occurs, reserving sufficient resources can guarantee
online service’s QoS, it hurts resource efficiency of cluster.

Optimistic allocation. Batch jobs can exploit the idle resources
on host to improve usage and can use more than they request.
They will request resources before scheduling and Fuxi uses an
incremental resource allocation approach to meet their request [30].
However, as shown in Figure 8(c), majority batch instances actually
use more resources in runtime than they requested, which brings
high elasticity in cluster. Figure 8(a,b) depicts instances’ average
runtime resource used vs. amount of resource they requested. We
can find out that instances with low resources request tend to use
more resources and most of highest average utilizations in each
group are exceed 100% (usedmore than requested). This phenomena
relevants to Fuxi’s incremental resourcemanagement protocol. It’s a
kind of over-commitment and we called optimistic allocation. In this
way, batch jobs can use the resources underutilized when online
services are not busy, which is determined by Fuxi. Meanwhile,
resources can be reclaimed by their owners when needed.

Resource mismatch. As discussed above, Alibaba’s CMS uses
a conservative allocation method to protect online service’s QoS,
while using a optimistic allocation approach for batch jobs to exploit
the spare resources. However, behind these allocation, there exist a
resource mismatch of CPU and memory, and memory first tends to
be used up before CPU.

As for diverse online services, they only use a few types of static
resource patterns. The resource request for online service includes
CPU (request and limit) and Memory. The number of CPU request
range from 1 to 32 cores (with 8 values in total), the CPU limit
range from 1 to 192 (with 19 values) and the memory range from
0.0 to 25 (with 24 values in total, 25 means 25% memory resource
of one physical host). Theoretically, there should be 3648 different
resources combinations. However, only 61 patterns of ⟨CPU Re-
quest, CPU Limit, Memory⟩ are used observed from 9K services and

5 10 12 30 50 60 75 100 200 300 400 500 600 700 800 1000
CPU request

100%
200%
400%
600%
800%

1000%

CP
U 
us
ed

3000%1250%916.7% 1956% 1182% 1112.7%

(a) CPU usage.

Low A Low B Medium A Medium B High A High B
Memory request

25%
50%
75%

100%
125%

M
em

or
y 
us
ed

1466.7% 27523.1% 577.5%

(b) Memory usage.

0.001 0.01 0.1 1 10 100
resource used vs. requested

0
20%
40%
60%
80%

100%

Fr
ac
tio

n 
of
 in

st
an

ce 92.7%

43.5%

CPU
Memory

(c) Used/Requested

Figure 8: Batch instances’ average (a) CPU and (b) memory
utilization relative to the resource they request. The top
bar represents the highest average utilization in each group.
Memory requests are classified into 6 groups: LowA [0.02,
0.1), LowB [0.1, 1), MediumA [1, 5), MediumB [5, 10), HighA
[10, 15) andHighB [15, 17.17]. (c) The CDF of instances’ max-
imum used CPU and memory resource in runtime vs. they
requested before scheduling.

70K containers. Besides, ⟨400, 400, 1.56⟩ (400 means 4 CPU core) is
most widely used resource pattern, covering 66.8% containers. With
diverse online services, each application at most has two different
patterns, meanwhile with low utilization. It indicates deprovision
excess resource from LC applications and reallocate them to batch
jobs is possible. As for batch instances, majority are CPU inten-
sive and they have more flexibility to use spare CPU cycles and
idle memory resources in host. However, batch jobs can not use
the memory resources stranded by LC applications. In sum, given
this hybrid allocation method, memory reaches the roof first. After
years of endeavor, memory seemingly becomes the new bottleneck
that prevents co-locating more workloads on one server.

4.2 Static memory partition
In Alibaba’s co-located hosts, memory resources are statically parti-
tioned into three regions for LC applications, batch jobs and system.
Figure 9 shows the memory model of co-located server. The solid
line brackets represent the memory quotas of LC applications, batch
jobs and system, the sum represents the total memory of the one
server. In general, each machine has different quota ratio. However,
LC applications generally would not request all memory in online



Who Limits the Resource Efficiency of My Datacenter IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

!"#$%& '($)* +$% $,-.," /"%0.1"/ !"#$%& '($)* +$% 2*)13 4$2/ 5&/)"#

!"#$%& *1)(*--& (/"6
2& $,-.," /"%0.1"/

!"#$%& *1)(*--& (/"6
2& 2*)13 4$2/

7(++"%

86-" #"#$%& $+ $,-.,"
/"%0.1"/

Figure 9: Static memory allocate model in co-located server.
Quota ratios are various for different host.

0% 20% 40% 60% 80% 100%
Allocation

5%
10%
15%
20%
25%
30%
35%
40%

Fr
ac
tio

n 
of
 m

ac
hi
ne

(a) Memory occupied by LC applications.

0% 20% 40% 60% 80% 100%
Utilization

10%

20%

30%

40%

50%

60%

Fr
ac

tio
n 
of
 c
on

ta
in
er

(b) Memory utilization.

Figure 10: Distribution of (a) memory occupied by latency-
critical containers per-machine (b) and averagememory uti-
lization per-container.

quota and remains some idle memory. A part of them will be re-
served as a buffer in order to prevent the bursty resource needs, and
the remaining part can be used by batch jobs. But memory shortage
is still a problem in some nodes, thereby infeasible for co-locating
more batch workloads to further use idle CPU cycles. Figure 10
represents the distribution of memory requested by LC containers
per-machine. 30%-60% of memory resource in majority servers are
stranded by online services, while on average 30% of memory are
underutilized. Furthermore, as discussed above, majority memory
resource will be always stranded by Java applications and can not
be reallocated to other jobs. Although static memory partition is
temporarily a reasonable approach to assign resource, it wastes
massive memory resource.

4.3 Implication
Sigma and Fuxi’s hybrid resource allocation and static memory
partitionmethods bring high resource efficiency of cluster. However,
it causes serious resourcemismatch of CPU andmemory and it’s not
sustainable in the long run. Based on these observations, we argue
the following. (1) Although conservative allocation can protect
LC application’s performance, identifying the specific resources
requirements of workloads is necessary to further improve resource
efficiency. (2) Hardware resource disaggregation such as CPU and
memory will bring great benefits. In Alibaba, they have deployed
the compute and storage disaggregated infrastructure and achieve
high efficiency. Besides, it brings high flexibility because resource
allocation is independent from other components [27] and batch
jobs can be reschedule to any machine without caring about data
migration. (3) Better global perspective and elaborate scheduling

0 1 2 3 4 5 6 7 8
Time(days)

1
2
3
4
5

#i
ns
ta
nc

e

#instance(1M)
#rescheduled instance(10K)

Figure 11: The number of instance arrived by time and the
number of instance reschedule happened in 15minutes win-
dow over 8 days.

algorithms are needed to improve cluster usage in Alibaba’s CMS.
For example, there remains some idle machines in the batch only
region when the majority of machines are busy.

5 RESOURCE ADJUSTMENT
As we discussed above, Sigma and Fuxi use conservative and opti-
mistic allocation approaches for two types of workloads. However,
due to the dynamic of cluster, the uncertain contentions on shared
resources can significantly affect LC application’s performance and
highly reduce the QoS provided by cloud providers. Therefore, some
dynamic mechanisms are needed, such as feedback controller and
dynamic adjustment in co-located cluster. From AT, we find both
effective dynamic adjustment (+) and some shortcomings (-).

5.1 Batch job eviction and rescheduling-
As second-class citizens, batch jobs are always make compromise
to protect LC applications. Due to the unpredictable interference
on shared resources, batch jobs could be deferred or evicted when
any performance spike happens. In Alibaba’s cluster, Fuxi’s agent
will halt batch instances first when online service’s performance is
affected, and then reschedule the instances to another host if inter-
ference still exists. The uncompleted instances will retry multiple
times until being completed successfully. For each retry, instance
will be rescheduled to another host, which has sufficient resources,
without data migration.2 In the dataset, batch jobs are only one
suffering from rescheduling in any case. According to AT, although
the rescheduling ratio (number of rescheduled instances over all
instances in 8 days) is only 0.081%, the number of rescheduled-
instances (RIS) reaches 1 million and 20% of the RISs have resched-
uled more than once. Furthermore, 61% of RIS are rescheduled after
running a while, 38% are rescheduled without running and 3% be-
long to DAG tasks. Figure 11 shows the number of RIS and instance
arrived by time over 8 days. We can observe that rescheduling oc-
curs more frequently during the day when online services are more
active, while infrequently at midnight when batch jobs have high
arrive rate.

When instances are rescheduled to a new machine, they need
to run from scratch. To quantify the impact of rescheduling on
instance’s execution, here we define Reschedule Time Cost (RTC)
and Reschedule time cost Over execution Time (ROT ) as follows:

RTC = ST iLST − ST iF ST (1)

2Because of the compute and storage disaggregated infrastructure in Alibaba, datas
are stored in other cluster.



IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Jing Guo and Zihao Chang, et al.

!"##$#% !"##$#% !"##$#%

&#'()#*+
'()!( !"##$#%

!+'*,+-".+

&#'()#*+
'()!( !"##$#%

&#'()#*+
'()!( !"##$#%

&#'()#*+
*/01.+(+-

2+'*,+-".+ ($0+ */'( 32456

4$0+

&#'()#*+ +7+*"(+ ($0+83!
"#
6

'*,+-".+ !+'*,+-".+

Figure 12: Defination of reschedule time cost and reschedule
time cost over execution time.

10−3 10−2 10−1 100 101 102 103 104 105
ROT

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

ROT
99% Instance

Figure 13: The CDF of ROT about all rescheduled instances.

ROT = RTC/TET (2)
where ST iLST refers the start time of instance i in final completed

running, ST iF ST represents the start time in first schedule running
and TET indicates the execution time of the instance, as shown
in Figure 12. RTC means the overhead of one instance because of
rescheduling, the smaller the better. ROT indicates the percent of
RTC in instance’s execution time, the smaller the better.

Taking a specific instance (ins_63835109 in the dataset) as an
example, it was firstly scheduled on server m_1718 at timestamp
373421 and then ran 609 seconds without completion. After that it
was rescheduled to server m_177 and began running at timestamp
374031 with execution time of 1196 seconds. We call 610 (374031-
373421) seconds as RTC and 0.51 (610/1196) as ROT. This instance
was delayed by 10 minutes due to rescheduling.

Figure 13 represents the CDF of ROT about all rescheduled in-
stances, we observe that about 69.2% of RIS’s RTC are larger than
their execution time and majority RISs suffer from severe delay.
With the feature of all-or-nothing, if the instance be halted and
rescheduled, it would severely hurts instance’s execution time. Al-
though this dynamic mechanism protect LC job’s performance, it
sacrifices batch job’s performance and limits resource efficiency
indirectly.

5.2 Nocturnal pattern+
In order to guarantee the QoS of online services, Fuxi and level0
strictly limit the resource utilization of batch jobs. Recall that Figure
5(c) shows batch jobs have obvious nocturnal pattern. At midnight,
when the online services are inactive, Fuxi will schedule more batch
jobs to the co-location cluster to improve resource usage3. In this
way, it can leverage the underutilized resource at night. Figure 14
depicts the fluctuations of CPU, memory and disk I/O utilizations

3In Alibaba, besides co-location cluster, it still has batch-only and online-only cluster.
Only part of batch jobs can be scheduled to co-location cluster and others are in
batch-only cluster.

0 1 2 3 4 5 6 7 8
Time(days)

0%
20%
40%
60%
80%

100%

Ut
iliz

at
io
n

CPU Memory Disk I/O

Figure 14: Overall resource utilization of the co-located clus-
ter within 8 days.

within 8 days. We observe obvious periodicity of diurnal variation.
Every day, batch jobs have a high arrival rate at 03:00, and then
CPU utilization increases dramatically and reaches the peak at 06:00,
since there are many resource-consuming tasks running at that
time. The nocturnal pattern greatly improve the resource efficiency
at midnight. However, Fuxi schedules less batch jobs to the co-
location cluster during the day to protect LC services, whereas
there are ample resource.

5.3 Memory stranding-
Alibaba has a large number of online services to provide real-time
services. In the dataset, more than 90% of online services are Java
applications. Due to the characteristics of Java Virtual Machine
(JVM) in memory usage [22] and conservative allocation, online
services reserve a large amount of resources at the beginning and
strand them in their lifecycle4. Figure 10 shows the distribution
of memory stranded by containers per-machine and memory uti-
lization. In each server, the memory allocated to the containers is
typically between 40% and 60%, and most containers’ memory uti-
lization are more than 90%, consuming over 40% of cluster memory
resources.

By analyzing the memory stranded by LC applications we find
thatmost ofmemory are consumed by JVMheap. JVMheapmemory
consists of two parts: Young Generation and Old Generation. Young
Generation is the place where all the new objects are created. When
young generation is filled, Minor garbage collection (Minor GC) will
be performed. The frequency of Minor GC reflects the real memory
requirements of JVM as well as the online workloads. Figure 15
reveals container’s Minor GC interval. The online containers have
a longer interval of Minor GC from midnight to early morning,
which means they require very little memory at that time. When
the memory demand of JVM is declined, the JVM heap memory
size remains constant, causing plenty of memory are stranded. But
during this period, batch jobs need more memory to support the
execution of millions of tasks. Therefore, self-contained JVM and
lack of reclaim technique further limit the resource efficiency of
datacenter.

5.4 Implication
Dynamic adjustment and nocturnal pattern are both effective ap-
proaches to better leverage idle resources in cluster. Although Al-
ibaba has made great endeavor, it still has some deficiencies. Based
on these observations, we argue the following. (1) Memory reclaim

4Sigma not fully support real-time resource adjustment, container migration and
reshedule.



Who Limits the Resource Efficiency of My Datacenter IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

0 1 2 3 4 5 6 7 8
Time(days)

20
30
40
50

In
te
rv
al
(s
ec

on
ds

)

Minor GC

Figure 15: OverallMinor garbage collection intervalwithin 8
days. Lower interval indicates containers consume memory
more frequently.

technique is needed to improve resource usage. A large amounts
of memory can be reclaimed from online services at midnight and
reallocated to batch-processing jobs. (2) Targeted optimization is
necessary for such a large-scale JVM cluster, such as dynamic man-
agement of JVM heap memory. (3) Capacity planning can be better
optimized according to the diurnal pattern of online services and
prediction information.

6 DISCUSSION
Aiming at achieving high resource efficiency of cluster, Alibaba co-
locates batch-processing jobswith online services to leverage idle re-
source. However, hybrid resource allocation and adjustment further
complicate resource management in datacenters. Recent research
works reveal that the ratio of computing-to-memory-capacity is
becoming more imbalanced [14, 15]. The utilization of CPU and
memory from AT also confirms this observation (Figure 14). [16]
has pointed out that the increasing imbalance between computation
and memory may cause memory capacity per-core dropping by 30%
every two years. Therefore, the performance of future systems will
be limited because of inadequate memory capacity and new mem-
ory wall will emerge in co-located cluster. Below, we will discuss
from two perspectives, JVM optimization and hardware resource
disaggregation, to address this imbalance.

6.1 Periodic GC adaptive adjustment
As discussed in section 5.3, a large amount of memory resources
are stranded by LC applications due to the conservative allocation
and the feature of JVM. Since the performance of garbage-collected
applications is highly sensitive to heap size[29], applications with
larger heap size will have low frequency of garbage collections (GC).
However, it limits resource efficiency in datacenter and will cause
thrashing[21]. Based on this observation, we propose a mechanism
of Periodic GC adaptive adjustment in JVM. It is an effective solution
to maintain an appropriate heap size and it will set a fixed GC
frequency for JVM. If a Java application is inactive with few GC, it
will actively perform GC operation to reclaim stranded memory,
and we will be able to reallocate such memory resource to batch
jobs at specific times (e.g. 03:00-06:00). This mechanism can increase
the throughput of batch tasks and overall resource usage of cluster.

To quantify the benefit of this mechanism, firstly we design
a formula to represent the relationship among workload’s CPU
utilization, Young Generation Size (YGS) and Minor GC Interval
(MGCI ) as follows:

CPU = k ·
MinorGCInterval(MGCI )

YounдGenerationSize(YGS)
(3)

Where CPU indicates the CPU utilization, MinorGCInterval and
YoungGenerationSize are values corresponding to CPU, and k is a
constant. According to the formula, the fine-grained control can
provide 3.43% of memory for each physical machine.

Several assumptions need to be made before going into detail:
(1) Under the same workload (CPU utilization), the interval of

JVM’s Minor GC is linearly related to young generation size.

YGS = k ·
MGCI

CPU
+ b

(2) Theoretically, when the size of the young generation size
approaches zero, the interval of Minor GC will also approach
zero, thus b = 0.

CPU = k ·
MGCI

YGS
(3) 15 seconds is a empirical value for periodic GC adaptive

adjustment.

MGCIa
YGSa

=
MGCI15s
YGS15s

According to the online services’ JVM trace5, the memory size of
young generation accounts for 5.49% of one physical host memory
and the minimum GC interval (Min) is lager than 40 seconds from
03:00 to 06:00. Assuming that the Minor GC interval is compressed
from 40s to 15s, the young generation size can be compressed to
2.06% according to the formula above. This indicates that 3.43%
memory resource in one host can be reallocate to other jobs. Taking
a cluster with 4,000 machines (256G memory each) as an example,
about 34.3T memory can be provided in the certain time, which is
equivalent to a capacity of 137 servers.

6.2 Hardware resource disaggregation
As discussed in section 4, hybrid resource allocation method causes
severe resource mismatch of CPU and memory. Machine, as the
natural boundary of hardware resource, has become the bottleneck
to achieve higher resource utilization in datacenters. For example,
a container can only use CPU and memory resource in the same
physical host. With the increasing heterogeneity of applications,
the traditional monolithic server [27] is reaching its limits. Sepa-
rating the monolithic server into several independent hardware
components like computation, storage and networking will greatly
improve resource utilization and elasticity. Each component has its
own resource controller and resource packing will become more
efficient, since resource will not be restricted to the same machine.
Thanks to the advances network technologies, it becomes common
to break the storage components from traditional computer archi-
tecture with more cost-effectively and it has been used in Alibaba’s
co-located cluster. Batch instances can be scheduled on any servers
with sufficient resources without caring about data migration.

Since the resource mismatch of CPU and memory heavily limits
the resource efficiency in Alibaba’s cluster, the hardware resource
disaggregation in CPU andmemorywill bring following the benefits
5This part of traces are not open source in Alibaba’s dataset.



IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Jing Guo and Zihao Chang, et al.

to their cluster. (1) Due to the disaggregation, memory and CPU
resource requests can go beyond the boundary of a physical host.
In fact, they can be satisfied by the entire cluster and can make
resource packing more efficiency. (2) Memory fragment will be
rarely seen and resource usage will become more effective.

7 CONCLUSION AND FUTUREWORK
This work has made a thorough analysis of newly released dataset
from Alibaba’s production cluster. To better understand the re-
source efficiency and characteristics of workloads in their datacen-
ter, we breakdown into two perspectives, resource allocation and
resource adjustment. The result shows several findings as follows. a)
Resource mismatch between CPU and memory is acute in their clus-
ter and memory becomes the new bottleneck. b) Batch-processing
jobs are treated as second-class citizens and always make com-
promise to protect latency-critical applications’ performance. c)
Hybrid of conservative and optimistic allocation method and mas-
sive self-contained Java application further complicate resource
management. Overall, we believe our findings will be applicable to
system designers and provide broad visibility for future research.

8 ACKNOWLEDGEMENT
We would like to thank anonymous reviewers for their valuable
feedbacks and suggestions. We thank Alibaba’s engineers Guoyao
Xu, Cheng Wang, Jie Chen, Shun Lv, Xiaoyu Zhang, Yinghao Yu
for their feedback on the paper.

This work was supported in part by National Key R&D Program
of China (2016YFB1000201), and the National Natural Science Foun-
dation of China (Grant No. 61420106013 and 61702480), and Youth
Innovation Promotion Association of Chinese Academy of Sciences
(2013073) and Alibaba Group through Alibaba Innovative Research
(AIR) Program.

REFERENCES
[1] Omar Arif Abdul-Rahman and Kento Aida. 2014. Towards understanding the

usage behavior of Google cloud users: the mice and elephants phenomenon.
In 2014 IEEE 6th International Conference on Cloud Computing Technology and
Science (CloudCom). IEEE, 272–277.

[2] George Amvrosiadis, JunWoo Park, Gregory R Ganger, Garth A Gibson, Elisabeth
Baseman, and Nathan DeBardeleben. 2018. On the diversity of cluster workloads
and its impact on research results. In 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18). 533–546.

[3] Shuang Chen, Christina Delimitrou, and Jose F. Martinez. 2019. PARTIES: QoS-
Aware Resource Partitioning for Multiple Interactive Services. In Proceedings of
the Twenty Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS).

[4] Yue Cheng, Zheng Chai, and Ali Anwar. 2018. Characterizing Co-located Data-
center Workloads: An Alibaba Case Study. In Proceedings of the 9th Asia-Pacific
Workshop on Systems (APSys ’18). ACM, New York, NY, USA, Article 12, 3 pages.
https://doi.org/10.1145/3265723.3265742

[5] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource central: Understanding and predicting
workloads for improved resource management in large cloud platforms. In Pro-
ceedings of the 26th Symposium on Operating Systems Principles. ACM, 153–167.

[6] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-Aware Schedul-
ing for Heterogeneous Datacenters. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS).

[7] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: resource-efficient and
QoS-aware cluster management. ACM SIGPLAN Notices 49, 4 (2014), 127–144.

[8] Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. 2015. Tarcil:
reconciling scheduling speed and quality in large shared clusters. In Proceedings
of the Sixth ACM Symposium on Cloud Computing. ACM, 97–110.

[9] Nosayba El-Sayed, Anurag Mukkara, Po-An Tsai, Harshad Kasture, Xiaosong
Ma, and Daniel Sanchez. 2018. KPart: A hybrid cache partitioning-sharing
technique for commodity multicores. In 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 104–117.

[10] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D
Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A platform for
fine-grained resource sharing in the data center.. In NSDI, Vol. 11. 22–22.

[11] Alibaba Inc. 2017. Alibaba production cluster data v2017. Website. https:
//github.com/alibaba/clusterdata.

[12] Alibaba Inc. 2018. Alibaba production cluster data v2018. Website. https:
//github.com/alibaba/clusterdata/tree/v2018.

[13] Alibaba Inc. 2018. Evolution of Alibaba Large-Scale Coloca-
tion Technology. Website. https://www.alibabacloud.com/blog/
evolution-of-alibaba-large-scale-colocation-technology_594172.

[14] Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten Schwan. 2017.
HeteroOS: OS Design for Heterogeneous Memory Management in Datacenter. In
Proceedings of the 44th Annual International Symposium on Computer Architecture,
ISCA 2017, Toronto, ON, Canada, June 24-28, 2017. 521–534. https://dl.acm.org/
citation.cfm?id=3080245

[15] James R. Larus. 2008. Spending Moore’s Dividend. 19. https://www.microsoft.
com/en-us/research/publication/spending-moores-dividend/

[16] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K
Reinhardt, and Thomas F Wenisch. 2009. Disaggregated memory for expansion
and sharing in blade servers. InACM SIGARCH computer architecture news, Vol. 37.
ACM, 267–278.

[17] Huan Liu. 2011. A measurement study of server utilization in public clouds. In
2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure
Computing. IEEE, 435–442.

[18] Qixiao Liu and Zhibin Yu. 2018. The Elasticity and Plasticity in Semi-
Containerized Co-locating Cloud Workload: a View from Alibaba Trace. In Pro-
ceedings of ACM Symposium on Cloud Computing (SOCC).

[19] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2015. Heracles: Improving resource efficiency at scale. In
ACM SIGARCH Computer Architecture News, Vol. 43. ACM, 450–462.

[20] Chengzhi Lu, Kejiang Ye, Guoyao Xu, Cheng-Zhong Xu, and Tongxin Bai. 2017.
Imbalance in the cloud: an analysis on Alibaba cluster trace. In Big Data (Big
Data), 2017 IEEE International Conference on. IEEE, 2884–2892.

[21] Martin Maas, Tim Harris, Krste Asanović, and John Kubiatowicz. 2015. Trash
day: Coordinating garbage collection in distributed systems. In 15th Workshop
on Hot Topics in Operating Systems (HotOS {XV}).

[22] Jeremy Manson, William Pugh, and Sarita V Adve. 2005. The Java memory model.
Vol. 40. ACM.

[23] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013. Sparrow:
distributed, low latency scheduling. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. ACM, 69–84.

[24] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and Michael A
Kozuch. 2012. Heterogeneity and dynamicity of clouds at scale: Google trace
analysis. In Proceedings of the Third ACM Symposium on Cloud Computing. ACM,
7.

[25] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. 2011. Google cluster-usage
traces: format + schema. Technical Report. Google Inc., Mountain View, CA,
USA. Revised 2014-11-17 for version 2.1. Posted at https://github.com/google/
cluster-data.

[26] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
2013. Omega: flexible, scalable schedulers for large compute clusters. In Proceed-
ings of the 8th ACM European Conference on Computer Systems. ACM, 351–364.

[27] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. LegoOS: A
Disseminated, Distributed {OS} for Hardware Resource Disaggregation. In 13th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
18). 69–87.

[28] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. 2015. Large-scale cluster management at Google with
Borg. In Proceedings of the Tenth European Conference on Computer Systems. ACM,
18.

[29] Ting Yang, Emery D Berger, Scott F Kaplan, and J Eliot B Moss. 2006. CRAMM:
Virtual memory support for garbage-collected applications. In Proceedings of
the 7th symposium on Operating systems design and implementation. USENIX
Association, 103–116.

[30] Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang, Hong Tang, and Jie Xu. 2014.
Fuxi: a fault-tolerant resource management and job scheduling system at internet
scale. Proceedings of the VLDB Endowment 7, 13 (2014), 1393–1404.

[31] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. 2010. Addressing
shared resource contention in multicore processors via scheduling. In ACM
Sigplan Notices, Vol. 45. ACM, 129–142.

https://doi.org/10.1145/3265723.3265742
https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata/tree/v2018
https://github.com/alibaba/clusterdata/tree/v2018
https://www.alibabacloud.com/blog/evolution-of-alibaba-large-scale-colocation-technology_594172
https://www.alibabacloud.com/blog/evolution-of-alibaba-large-scale-colocation-technology_594172
https://dl.acm.org/citation.cfm?id=3080245
https://dl.acm.org/citation.cfm?id=3080245
https://www.microsoft.com/en-us/research/publication/spending-moores-dividend/
https://www.microsoft.com/en-us/research/publication/spending-moores-dividend/
https://github.com/google/cluster-data
https://github.com/google/cluster-data

	Abstract
	1 INTRODUCTION
	2 BACKGROUND AND RELATED WORK
	2.1 Workload characterization
	2.2 Cluster management systems

	3 CLUSTER TRACE OVERVIEW
	3.1 Dataset
	3.2 Overall Usage
	3.3 Characteristics

	4 RESOURCE ALLOCATION
	4.1 CMS resource allocation
	4.2 Static memory partition
	4.3 Implication

	5 RESOURCE ADJUSTMENT
	5.1 Batch job eviction and rescheduling-
	5.2 Nocturnal pattern+
	5.3 Memory stranding-
	5.4 Implication

	6 Discussion
	6.1 Periodic GC adaptive adjustment
	6.2 Hardware resource disaggregation

	7 Conclusion and future work
	8 ACKNOWLEDGEMENT
	References

