
QoSMT: Supporting Precise Performance Control for
Simultaneous multithreading Architecture

Xin Jin1,2, Yaoyang Zhou1,3, Bowen Huang1, Zihao Yu1,3, Xusheng Zhan4, Huizhe Wang1,3,
Sa Wang1,3, Ningmei Yu2, Ninghui Sun1,3, Yungang Bao1,3∗

1State Key Laboratory of Computer Architecture, ICT, CAS
2Xi’an University of Technology

3University of Chinese Academy of Sciences
4Huawei Technologies Co., Ltd.

ABSTRACT
Simultaneous multithreading (SMT) technology improves CPU
throughput, but also causes unpredictable performance fluctuations
for co-located workloads. Although recent major SMT processors
have adopted some techniques to promote hardware support for
quality-of-service (QoS), achieving both precise performance con-
trol and high throughput on SMT architectures is still a challenging
open problem.

In this paper, we perform some comprehensive experiments on
real SMT systems and cycle-accurate simulators. From these experi-
ments, we observe that almost all in-core resources may suffer from
severe contention as workloads vary. We consider this observa-
tion as the fundamental reason leading to the challenging problem
above. Thus, we introduce QoSMT, a novel hardware scheme that
leverages a closed-loop controlling mechanism to enforce precise
performance control for specific targets, e.g. achieving 85%, 90% or
95% of the performance of a workload running alone respectively.
We implement a prototype on GEM5 simulator. Experimental re-
sults show that the control error is only 1.4%, 0.5% and 3.6%.

CCS CONCEPTS
• Computer systems organization→ Cloud computing.

KEYWORDS
SMT Interference, Data Center, QoS, Performance Predictability

ACM Reference Format:
X. Jin, Y. Zhou, B. Huang, Z. Yu, X. Zhan, H. Wang and S. Wang, N. Yu,
N. Sun, Y. Bao. 2019. QoSMT: Supporting Precise Performance Control for
Simultaneous multithreading Architecture. In 2019 International Conference
on Supercomputing (ICS ’19), June 26–28, 2019, Phoenix, AZ, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3330345.3330364

∗Xin Jin and Yaoyanng Zhou contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS ’19, June 26–28, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6079-1/19/06. . . $15.00
https://doi.org/10.1145/3330345.3330364

1 INTRODUCTION
Simultaneous multithreading (SMT) technology is widely adopted
in contemporary general-purpose processors. It improves the through-
put of a processor by issuing instructions from multiple threads to
achieve better utilization of in-core resources such as instruction
queue (IQ), reorder buffer (ROB) and load-store queue (LSQ).

However, SMT may result in unpredictable performance varia-
tions when multiple applications run simultaneously on an SMT
processor. Recent work has shown that applications may suffer
varying performance degradation by as high as 70% due to SMT
induced interference [33]. To confirm this, we conduct some exper-
iments on an Intel i7-4770 server with Hyper-Threading [21]. As
shown in Figure 1, SMTmay hurt the performance of an application
(e.g. perlbench) by 1.1X-2.1X when it is co-located with different
applications.

Figure 1: Performance variations of Spec2006 workloads
Recognizing the SMT-induced interference problem, Intel adopts

a static partitioning approach to segregate two threads on shared
pipeline resources such as IQ and ROB [21]. But it is inflexible
for dynamic resource adjustment and may degrade both threads’
performance due to reduced pipeline resources. IBM’s POWER
series processors allow to assign different priorities to workloads.
And they provide different instruction fetch rates to guarantee the
performance of high priority workloads [28]. But this approach
makes other workloads hard to utilize in-core resources, against the
original motivation of SMT. Although there is previous literature [9]
[10]on hardware design for guarantee of quality-of-service (QoS) on
SMT processors, most of their designs require profiling in-advance.

206

https://doi.org/10.1145/3330345.3330364
https://doi.org/10.1145/3330345.3330364

QoSMT: Supporting Precise Performance Control for SMT ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

However, due to the limitation of privacy data protection and high
operation and maintenance cost, the data center is reluctant to
accept the off-line profiling.

Industrial companies have been strugglingwith the unpredictable
performance caused by SMT. For instance, Microsoft even disables
Hyper-Threading on Xeon servers in many data centers[23]. They
hope it can help to guarantee predictable performance for better
user experience. However, this will waste tremendous computing re-
sources. Alibaba solicits solutions to perform load balancing among
tens of thousands of Intel Xeon servers with Hyper-Threading en-
abled. This is because unpredictable performance on a single server
brought by SMT can make load balancing very difficult in large
scale data centers.[1]

In this paper, we ask the following question: Can we obtain
guaranteed performance of a high-priority workload on an
SMT core, meanwhile achieving reasonable overall through-
put? Specifically, multiple workloads are allowed to co-run on an
SMT core, but at least one workload with higher priority such as a
latency-sensitive workload should strictly satisfy its performance
target. This target can be described as, for example, “guaranteeing
90% of the performance of the workload’s solo execution”.

We introduce QoSMT, a novel hardware mechanism that is able
to guarantee real-time performance requirements for higher prior-
ity workloads under SMT-enabled environments without profiling
in advance. The key idea is to quantitatively measure SMT-induced
performance degradation at run time, locate critical interference
caused by lower priority workloads, and make up the performance
loss by dynamic resource adjustment. To understand this, consider
multiple workloads co-running on an SMT core and a high-priority
workload among them∗ such as web search. The high-priority work-
load requires achieving at least 90% of the performance of its solo
mode(the workload is executed alone on a processor)in term of IPC
(instructions per cycle). To this end, we divide the execution into a
series of epoches each of which contains tens of thousands cycles.
During each epoch, QoSMT will first predict the execution time of
the workload’s solo mode (Tsolo) online, calculate the performance
loss between the measured execution time (Tshare) and Tsolo . If
Tsolo
Tshare

< 0.9, an interference detector will identify the microar-
chitecture resource contributing most to the performance loss. At
last, to eliminate performance interference, a controlling unit will
dynamically adjust the resource allocation until the performance
requirement is satisfied. To realize this, we need to address these
challenges:

(i) How to identify critical in-core resources causing performance
loss?

There are many microarchitecture resources shared in an SMT
core including IQ, ROB, LSQ, instruction L1 cache, data L1 cache,
L2 cache and so forth. As shown in Figure 2, every resource could
suffer severe contention. At a high level, we define events of severe
interference for each resource, collect stall cycles caused by these
events and rank resources according to stall cycles as well as their
criticality (see 2.2).

(ii) How to precisely quantify a workload’s performance loss due
to SMT?

∗It is worth noting that in practice usually only one high-priority workload is scheduled
on an SMT core.

When multiple workloads are co-running on an SMT core, it is
almost impossible using traditional performance counters to obtain
a workload’s performance in the solo mode because it is hard to
decouple the SMT induced interference from these performance
counters. However, performance in solo mode is necessary for cal-
culating performance loss. To address this challenge, we propose a
shadow solo-cycle accounting (SSCA) methodology, which mon-
itors all shared in-core resources on the fly and counts the stall
cycles caused by other workloads (see 4.2).

(iii) How to perform timely resource adjustment to meet a work-
load’s performace requirements?

Hardware-software codesign is needed to address this issue:
First, we leverage a mechanism similar to Intel’s model-specific
register(MSR) [19] to allow workloads to convey their performance
requirements to the underlying hardware. Second, we add con-
trol logic to shared resources to enable dynamic resource adjust-
ment. Finally, we design an online algorithm, which takes IPCsolo ,
IPCshare and status of critical resources as inputs and then tells
how many resources should be adjusted. Thus, these operations
form a closed-loop controlling mechanism that consists of monitor-
ing, decision and adjustment. (see §4.3)

To show the feasibility of our design, we have implemented
QoSMT on GEM5 simulator [3]. Experimental results on SPECCPU
2006 show that QoSMT is able to achieve performance control for
different performance targets (i.e., 85%, 90% and 95% of IPCsolo)
with an average error of 1.4%, 0.5% and 3.6%.

To summarize, we make the following contributions:
• We demonstrate a thorough analysis of interference induced
by SMT from micro-architecture level and reveal two find-
ings that provide important insights about supporting per-
formance guarantee on SMT processors.
• We propose a methodology that enables precise performance
control with high utilization, i.e. QoSMT which leverages a
shadow solo-cycle accounting framework and closed-loop
controlling algorithms.
• We implement a prototype of QoSMT on GEM5 simulator.
Through comprehensive experiments, we demonstrate the ef-
fectiveness of QoSMT for guaranteeing specific performance
target for a given workload while improving SMT resource
utilization.

2 BACKGROUND
In this section, we briefly introduce pros and cons of SMT, and
then illustrate resources causing contention on SMT. Finally, we
present current techniques of eliminating contention adopted by
three commodity processors, i.e., Intel’s SkyLake, IBM’s POWER8
and AMD’s Zen.

2.1 SMT’s Pros and Cons
To improve processors’ throughput, Tullsen et al. proposed simulta-
neous multithreading (SMT) that allows multiple logical threads to
run on a single physical processor to better utilize pipeline resources.
In modern commodity multicore processors, each physical core sup-
ports two to eight logical threads. Intel and AMD’s processors[2]
usually have two logical threads while IBM’s POWER8 [29]supports
eight logical threads.

207

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA X. Jin, Y. Zhou, B. Huang, Z. Yu, X. Zhan, H. Wang and S. Wang, N. Yu, N. Sun, Y. Bao

Many studies demonstrate the efficacy of SMT. For instance, in
light of Madonna et.al’s evaluation [20]on IBM POWER8 proces-
sors with SMT enabled, running eight instances of 433.milc from
SPECCPU2006 on four dual-thread physical cores can approach the
performance of running them on eight different physical cores.

However, resource sharing within a physical core may cause per-
formance degradation for logical threads. As illustrated in previous
literature [33], a logical thread may suffer performance degradation
by up to 70% when its demanding resources are occupied by other
threads.

2.2 Resource Contention on SMT
In general, there are many shared resources in SMT processors,
including: fetch unit, instruction queue (IQ), reorder buffer
(ROB), load/store queue (LSQ), L1 I-cache/D-cache, and L2
cache and so forth. A shared resource may encounter a “stall
event” due to resource contention, which will prevent instructions
from being executed in pipelines. To better understand the SMT-
induced interference, We divide these shared resources into three
categories according to previous studies [11].

Front-end resources: Instruction fetch unit is the major shared
front-end resource. Fetch unit works like a time-sharing scheduler
that can fetch one or more instructions during each time slice. In
SMT processors, all logical threads share these time slices with a
scheduling policy such as round-robin policy. Thus, a fetch stall
event may happen for one logical thread when time slices are occu-
pied by other threads.

Back-end resources: The shared back-end resources include
ROB, IQ, and LSQ. A stall event of back-end resources happens
when a load or store instruction suffers a long cache miss and fi-
nally causes dispatching stall because of back-end resources getting
exhausted without commit-ready instructions.

Cache resources: All threads share the same cache hierarchy.
Unfortunately, shared cache contention can result in significant
performance degradation. To address this issue, Intel’s processors
recently support Cache Allocation Technology (CAT) [18] for L3
cache. But L1 and L2 caches shared by multiple threads still suffer
severe contention.

2.3 Commodity Processors’ Efforts
As illustrated in Table 1, many commodity processors have devoted
efforts to alleviating the SMT interference problem.

Intel Skylake and AMD ZEN attempt to guarantee fairness for
two logical threads through statically partitioning back-end re-
sources such as ROB and LSQ. However, static back-end resource
partitioning is insufficient to completely eliminate interference. To
confirm this argument, we conducted experiments on a server with
Intel i7-4770 processors that support Hyper-Threading feature [19]
and static partitioning. As shown in Figure 1, when co-located with
other applications on a physical core, almost all applications suffer
from performance loss, by even up to 2.1X (e.g. perlbench).

IBM POWER8 focuses more on controlling front-end resource
and adopts an aggressive policy to support differentiated instruction
fetch rates to enforce performance guarantee. But the performance

Table 1: Commodity processors’ efforts to eliminating per-
formance interference caused by SMT.

Skylake Power 8 ZEN
Front-end Fetch Unknown Unknown Unknown

Back-end

ROB Partition Shared Partition
IQ Shared Shared Partition
LQ Partition Shared Shared
SQ Partition Shared Partition

Cache
L1-I Shared Shared Shared
L1-D Shared Shared Shared
L2 Shared Shared Shared

target of Power8 is coarse. It only marks a thread as high or low pri-
ority, rather than precisely control the performance like achieving
“90% of the performance of solo mode”.

Since there is little literature about the impact of the three cat-
egories of shared resources on performance variations, it seems
that processor vendors do not reach a consensus on how to address
the challenge. Thus, it is worthwhile to conduct a comprehensive
investigation.

3 OBSERVATIONS ON SMT INTERFERENCE
In this section, we present somemore in-depth analysis of resources
contention by cycle-accurate simulations (see experimental setup
in Section 5.1). Specifically, we perform two sets of experiments.

3.1 Static Partitioning
Intel’s processors adopt static partitioning for back-end resources,
but still exhibit severe performance fluctuations. Since the instruc-
tion fetch unit of front-end resources employs a fair round-robin
policy, which results in the same effect of static partitioning, a pos-
sible reason is because cache resources such as L1/L2 caches are all
shared. To test the assumption, we perform experiments to com-
pare three management polices for back-end and cache resources
as follows:

(1) All-Shared: Both back-end and cache resources are shared
by all logical thread.

(2) Back-end Static Partitioning (Back-end-SP): This is an
Intel-like policy. The whole back-end resources are equally
partitioned for each logical thread, but L1/L2 cache are still
shared.

(3) Complete Static Partitioning (Complete-SP): Both back-
end and cache resources are equally partitioned for each
logical thread.

We implement all these policies on a GEM5 based SMT simula-
tor and run seven workloads of SPECCPU 2006 that are randomly
selected on the simulator. For each workload, we run it with other
six workload and then measure its averaged IPC and performance
variation. As shown in Figure 3, the All-Shared policy exhibits
worst while the Complete-SP policy performs best in terms of
performance variation. For instance, the variation of zeusmp’s nor-
malized IPC decreases by an order ofmagnitude, from 0.1 to 0.01. For
the Back-end-SP policy, its performance variation is non-trivial,

208

QoSMT: Supporting Precise Performance Control for SMT ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

Figure 2: Interference on shared resources: gcc & omnetpp running with other workloads.

Figure 3: The impact of static partitioning on performance.

which means that L1/L2 cache contention should not be neglected
if we want to achieve precise performance control.

However, although the Complete-SP policy is beneficial for de-
creasing performance variation, it is still insufficient for precise per-
formance control due to two reasons. A fixed quota allocation policy
does not guarantee a fixed predictable performance for any given
workload. Different workloads may suffer from different perfor-
mance degradation. For instance, even with Complete-SP policy
that each workload gets the same amount of resources, bzip2’s nor-
malized IPC decreases by 20% while the normalized IPC of gobmk
and hmmer decrease by more than 40%. In addition, static parti-
tioning reduces the amount of available resource capacity for each
logical thread, which can result in large performance degradation.
Take gobmk as an example, its normalized IPC decreases by almost
30%, compared to the Back-end-SP policy. Therefore, dynamic
resource partitioning is necessary to achieve our goal of precise
performance control.

3.2 Demand of Dynamic Resource Partitioning
We further investigate which resources may require dynamic par-
titioning. We co-run gcc and omnetpp with six other workloads
randomly selected from SPECCPU 2006.

Figure 2 shows the behavior of different shared resources. The
upper two figures depict normalized stall cycles caused by stall
events of back-end resources, while the bottom two figures illustrate
the normalized MPKI (miss per kilo-instruction) of cache resources.
According to the figures, our findings are as follows:
• Finding 1. Almost each component suffers from severe in-
terference and potentially becomes a bottleneck.

For example, for gcc, the stall cycles of LQ increase modestly
by only 3 times while the stall cycles of IQ increase by more than

48 times, indicating that LQ is not a critical resources for gcc. But
LQ’s stall cycles increase sharply by about 10 times when omnetpp
co-runs with mcf.

• Finding 2. Even one pair of workloads can result in con-
tention on multiple components.

For example, the workload pair of omnet and hmmer suffer from
the contention of not only ROB but also ICache. The case of omnet
and mcf is even worse, incurring significant contention of many
components including IQ, LQ, SQ, ICache and LLC.

These findings suggest that resource requirements of workload
mixtures change significantly and it is difficult to meet the resource
requirements of each logical thread through pre-fixed static re-
source partitioning. In order to guarantee the performance of a
targeted thread, a flexible dynamic resource partitioning for both
back-end and cache resources is needed.

4 DESIGN OF QOSMT
In this paper, we propose QoSMT that aims to guarantee perfor-
mance of high-priority threads (HPT) while achieving reasonable
overall throughput on SMT processors. QoSMT consists of two
modules: contention detection module (CDM) and policy enforce-
ment module (PEM). CDM is responsible for collecting and record-
ing contention data on the three categories of shared resources.
Meanwhile, PEM periodically takes the contention data as input to
perform dynamic resource allocation.

There are three main challenges in implementing the two mod-
ules described above: (1) CDM needs to identify the most severely
interfered resources; (2) CDM needs to predict performance in solo–
mode with SMT enabled; (3) PEM should be able to do efficient
dynamic controlling in response to the information gathered above.

Figure 4 shows the overview design of QoSMT. Among all the
components, 1○, 3○, 5○ are responsible for both contention detection
and policy enforcement; 2○, 4○, 7○ belongs to CDM; 6○ are paths for
information gathering.

Figure 4 also illustrates the QoSMT process of dynamically guar-
anteeing HPT performance through a real fragment from an evalu-
ation where HPT:astars is co-running with LPT:cactusADM. The
whole process is divided into four steps:

Step1: At beginning, the user or administrator specifies a perfor-
mance target for the HPT by configuring the MSR register.

Step2: CDM keeps identifying various interference events with
the help of CMT(cache miss table) and counts the stall cycles of
each interference event in the CRT(contention resource table) 7○.

209

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA X. Jin, Y. Zhou, B. Huang, Z. Yu, X. Zhan, H. Wang and S. Wang, N. Yu, N. Sun, Y. Bao

Figure 4: The overview design of QoSMT
Step3: Based on the number of stall cycles counted in CRT in

Step2, the HPT’s solo performance will be predicted.
Step4: If the current HPT performance fails to reach the target,

PEM will conduct dynamic resource allocation operation. PEM will
reallocate the resource of TOP rank in CRT from LPT to HPT. For
example, t1 in the figure shows that the current performance does
not meet the requirements, and ROB is the performance bottleneck.
So HPT gets more ROB resources, increasing the performance .

4.1 Critical Resource Detection Mechanism
In order to guide dynamic resources allocation, we first need to
detect the true interference events caused by SMT among various of
pipeline stall events. And then find out the most severely interfered
resources (critical resources). As defined in earlier sections 2.2, we
need to detect front-end contention, back-end contention and cache
interference. For the sake of logical sequence, we explain the three
detection schemes in reverse order.

4.1.1 Cache Interference Detection.
The main difficulty in detecting cache interference is:

• How to distinguish whether a HPT cache request miss is
caused by low priority thread (LPT)’s eviction or by HPT
itself;

To solve the problem, we devise a shadow tag 1○ mechanism. The
shadow tag maintains a private LRU stack for HPT. For each cache
access, only the access requests issued by HPT will access shadow
tag. When an HPT cache miss occurs, but if it hits in the shadow
tag, CDM treats this cache miss as an interference event.

To record the detection results, we design a cachemiss table(CMT) 2○.
CMT has three parts, corresponding to I-cache, D-Cache and L2-
Cache respectively. Each part has the same number of entries as
the number of MSHRs, which is the maximum number of outstand-
ing miss allowed. CMT is synchronized with MSHR allocation and
deallocation. Whenever an MSHR is allocated, its corresponding
valid bit in CMT is set, the ID of the logical thread that initiates
the cache access will be recorded in the TID field. If a shadow tag
hits, we also need to set the interference bit. Whenever an MSHR
is released, its corresponding valid bit and interference bit in CMT
should be cleared.

4.1.2 Back-end Contention Detection.
There are two main difficulties in detecting back-end contention:

• How to distinguish whether a back-end stall is caused by
LPT occupying shared resources or by HPT itself;
• How to trace the root cause of back-end stall under SMT.

To solve the first problem, we bring the idea of shadow tag to other
components, such as shadow ROB, shadow IQ, shadow LQ and
shadow SQ 3○. We use the shadow queue to emulate HPT’s use of
the original queue when it would run in solo mode (with the whole
physical core monopolized). When the real queue for HPT running
in SMT-mode is not full, behaviors of a shadow queue are actually
consistent with those of the real queue. When the real queue for
HPT is full, the shadow queue’s entries continue to be allocated
until it reaches the max size of original queue. Once the shadow
queue is exhausted, the subsequent stall events should also occur
in solo mode, which are caused by HPT itself. As a consequence, by
comparing the full state of real queue and shadow queue, we can
tell whether SMT induced contention is happening.

Below we will take shadow ROB as an example to illustrate
the maintenance of shadow queue. The shadow ROB can be im-
plemented as a counter, and is incremented whenever an HPT
instruction is inserted into ROB. When the ROB blocks HPT, CDM
keeps incrementing the shadow ROB counter. When the real ROB
is full but the shadow ROB is not yet, the ROB contention is hap-
pening. When both of the two queues reach the max size, we will
not increment the stall cycles in CRT. Shadow ROB counter is decre-
mented since an HPT instruction is retired from ROB. The other
three shadow queue counters are maintained similarly.

Upon a long-latency load miss, the processor back-end will stall
because of the ROB, IQ, or LSQ getting exhausted[14]. To trace the
root cause of back-end stall, shadow queues need to cooperate with
CMT. Figure 5 illustrates how to use CMT and shadow queue to
detect contention on back-end resources by taking IQ as an example.
When HPT is to dispatch instructions and IQ is full, it will read
CMT to check whether this blocking is caused by cache interference.
Then it will see whether there are outstanding misses or floating
point instructions in computation. If neither of situations happens,
HPT should not be blocked. So this stall is regarded as a contention
in IQ. If there exists such a long latency instruction, we check the
shadow IQ counter for further decision. If the shadow IQ counter
< maxIQsize, which suggests that the IQ Full event is caused by
another thread’s contention on IQ, this incident should be regarded
as a SMT contention. If the shadow IQ counter = maxIQsize, it is
the thread itself filled up the IQ, not to blame SMT.

210

QoSMT: Supporting Precise Performance Control for SMT ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

IQ Full
This cycle is L2

contention
This cycle is L1

contention

Read
information
from CMT

This cycle is
normal IQ full

Shadow IQ
counter == IQ size?

L2 interference L1 interference

L1/L2 miss ||
computing FP

This cycle is IQ contention

TRUE TRUE
FALSE

FALSE

TRUETRUE

FALSE FALSE

Figure 5: Back-end contention detection.
Table 2: Conditions of Fetch Contention

Status of HPT Contention Conditions
I-Cache Miss by LPT I-Cache Contention
I-Cache Miss by HPT Not Contention
Back-end Stall by LPT Back-end Contention
Back-end Stall by HPT Not Contention
Yield Front-end Contention

4.1.3 Front-end Contention Detection.
To detect contention at front end 5○, we classify the scenarios

in which fetch can not supply instructions into three categories.
(1) I-Cache miss, (2) LPT preempts HPT’s timeslice, (3) Stalls at
back-end resources.

In Table 2 we show our contention determination scheme based
on HPT’s status. Next we give an explanation of Table 2. Since
whether LPT getting a fetch opportunity interferes HPT depends
on the status of HPT, the first column of matrix shows HPT’s status.
Back-end stall by LPT means that HPT has back-end stalls, which
is caused by LPT. Yield means that in this cycle HPT has neither
I-cache miss nor back-end stall, but LPT takes the fetch opportunity.
Other states’ name explains themselves. The second column shows
whether this cycle should be judged as a contention and what kind
of contention it is when HPT does take the fetch opportunity. For
example, the third row tells that when HPT’s back-end is blocked
by LPT, this cycle in the fetch phase should be regarded as Back-end
Contention.

4.2 Performance Prediction Mechanism
To ensure precise performance control, we need to precisely predict
performance in solo-mode as a baseline.

4.2.1 Gathering Contention Information.
In order to quantify the contention on each shared resource, we

design a Critical Resource Table (CRT) to record contention cycles
for each stall event by three steps. First, each CDM distributed
at each pipeline stage will separately generate contention judge-
ment signals by checking whether HPT is stalled due to contention
based on the mechanism mentioned above. Then the signals will
be forwarded to the dispatch stage. Finally, the values of the corre-
sponding contention cycle entries of the CRT are updated according
to the contention judgement signals at dispatch stage.

To gather contention judgement signals detected in distributed
CDMs, we add some signals along the paths marked by 6○. In par-
ticular, FC (front-end contention) means that contention is detected
at fetch/rename stage, and passed to later stages. BC (back-end

contention) means that contention is detected at rename/dispatch
stage, and passed to earlier stages. Fetch stage obtains back-end
contention information by this path. Signals from CMT to pipeline
stages convey cache interference and miss information. They are
used in 4.1.2 and 4.1.3.

For example, when the CDM at rename stage detects a ROB stall
event of HPT caused by LPT, it will forward the judgement signals
to the dispatch stage and will increment the contention cycle value
corresponding to ROB contention entry in the CRT.

There are two reasons for this design: (1) The PEM needs to
use contention cycles as input. Since contention information is
distributed at serval stages, a centralized CRT can avoid long wire
delay of reading distributed contention values; (2) Because of the
overlap of SMT-induced contention and stalling by itself, perform-
ing contention detection at one stage of pipeline could lead to
inaccurate result that the amount of collected contention cycles
may diverge from the actual amount caused by LPT. In addition,
updating CRT at the dispatch stage can achieve a good tradeoff
between design complexity and statistical accuracy. The earlier con-
tention detection is performed in the pipeline, the less information
and poorer statistical accuracy will be obtained. The later detection
is performed in the pipeline, the more complicated the design will
be.

4.2.2 Predicting Performance in Solo-Mode.
Referring to prior work [12], we design shadow solo-cycle ac-

counting (SSCA) approach to estimate workloads’ execution time
in solo mode by Tsolo = Tshare − Tinter f , where Tshare is the
execution time in SMT mode and the interference time, Tinter f , is
the sum of the contention stall cycles stored in the CRT.

ALGORITHM 1: Dynamic Controlling Policy
Input:
Tsolo : Estimated solo execution time
Tshare : Real execution time in SMT processor
CurPer f : Current HPT performance behavior
ResourceList : Enumeration of shared resources
ContentionList : Contentions cycles of resources in CRT
Crit icalResouces : Resources affect HPT most
ExpectedTarдet : User’s expected target
Output: CurPer f =

Tsolo
Tshare

if CurPer f > ExpectedTarдet then
for r esource ∈ ResourceList do

Decrease HPT quota of r esource ;
Increase LPT quota of r esource ;

end
else

Argsort ResourceList by ContentionList ;
Crit icalResouces ← ResourceList [top : tail];
for r esource ∈ Crit icalResouces do

Increase HPT quota of r esource ;
Decrease LPT quota of r esource ;

end
end

211

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA X. Jin, Y. Zhou, B. Huang, Z. Yu, X. Zhan, H. Wang and S. Wang, N. Yu, N. Sun, Y. Bao

4.3 Dynamic Controlling
QoSMT enables users to write the Expected Target Register, which
is similar to MSR in Intel processors, to convey performance target
requirements. To achieve the expected target, the PEM takes pre-
dicted Tsolo and detected critical resources as input, and leverages
resource allocation modules in fetch unit 5○, ROB, IQ, LSQ 3○ and
caches 1○, to perform dynamic resource adjustment. Next, we will
first introduce the algorithm of the decision and controlling module,
and then describe the grain of resource adjustment.

Algorithm 1 shows the procedure of dynamic controlling. We
first calculate current performance target of HPT using solo exe-
cution time estimated in 4.2. If current performance is larger than
expectation, then we allocate all kinds of resources from HPT to
LPT to improve throughput. If not satisfied, the PEM first sorts
ResourceList in CRT by corresponding contention cycles in de-
creasing order. Then PEM chooses the most critical resources from
the sorted list, and reallocates resources accordingly.

The quantum of fetch scheduling is one cycle out of 16 cycles.
When HPT needs more fetch quota, one more cycle is allocated
from LPT to HPT, or vice versa. Both threads have at least one cycle
out of 16 cycles. Assume that size is the capacity of ROB/IQ/LQ/SQ,
each thread occupies at least size/16 entries and size/16 is the
reallocation unit. For caches, the allocation unit is cache associa-
tivity, and each thread occupies at least one way. Initially, all these
resources are equally partitioned.

5 EVALUATION
5.1 Experiment setup
We implement QoSMT on GEM5 simulator. Considering the sup-
port of SMT, we choose Alpha ISA. We use 24 benchmarks from
SPEC2006 [17] as workloads. Due to compile or runtime errors,
another 5 benchmarks are not used. To extract typical behaviors of
workloads, we use SimPoint [25] to acquire checkpoints for each
benchmark. We run different benchmarks from their checkpoints
on SMT to achieve workload co-location.

To obtain typical workload pairs among these benchmarks, we
refer to the balanced random method [32] to select 48 pairs of
benchmarks for experiments. Then we run QoSMT with 85%, 90%
and 95% as users’ expected target. But due to space limitation, we
show only 24 pairs without loss of generality. They are selected
by first ranking the 48 pairs according to HPT performance, then
sampled with a fixed step of 2. They are used through the remaining
parts of the evaluation.

Table 3 shows the GEM5 configurations. Since both Intel and
AMD’s processors have two logical threads, we also primarily in-
vestigate the configuration of two threads. We assume that fetch
buffers are private with round-robin policy by default, but the func-
tional units are shared.

For convenience, we use some abbreviations to refer all the poli-
cies. FR means fetch round-robin. FD means fetch dynamically. BS
means back-end sharing. BP means back-end static partitioning. CS
means cache sharing. CP means cache static partitioning. Cazorla is
a state-of-the-art mechanism presented by Cazorla,e.g.,[6]. QoSMT,
our methodology, will dynamically adjust all resources.

Table 3: Configuration List
resource configuration
Width 8
Fetch buffer size 64 per thread
ROB entries 224
IQ size 96
LQ entries 72
LQ entries 56
Physical Int registers 256
Physical FP registers 200
L1 D-Cache 32KB, 4-way, LRU, 8 MSHRs
L1 I-Cache 32KB, 4-way, LRU, 8 MSHRs
L2 Cache 2MB, 8-way, LRU, 32 MSHRs
Cache latencies L1(4), L2(40)

Figure 6: Target IPC-Throughput

5.2 Evaluation of Different Performance Target
To verify QoSMT’s capability of guaranteeing performance target,
we run the selected pairs of workloads with HPT performance tar-
gets of 85%, 90% and 95%, respectively. Figure 6 shows the distribu-
tions of HPT normalized IPC(IPCshare/IPCreal)†from the selected
pairs with different policies. The segment length of each policy
on X-axis implies the variation of the performance of HPT. The
shorter the segment is, the more predictable performance the pol-
icy provides. The centroid of each segment indicates the average
performance of HPT. FR-BS-CS is a policy that lets all resources
suffer from full contention, which performs the worst predictability
for HPT. FR-BP-CS simulates the policy adopted by Intel, but it
may suffer from interference in cache. FR-BP-CP supports cache
partitioning based on FR-BP-CS. Its distribution is a little more con-
centrated than FR-BP-CS, yielding a little bit better predictability.
However, the centroid moves to the left, suggesting performance
loss. It is worth noting that all of these conclusions are consistent
with the observations in §3. The centroid of three green segments
(QoSMT-85, QoSMT-90 and QoSMT-95) show that QoSMT can let
HPT finally achieve average normalized IPC of 86.4%, 89.5%, 91.4%
respectively. The segment length of Cazorla-90 is almost the same
as that of QoSMT-90, indicating that they have similar performance
stability. However, the average normalized IPC of Cazorla-90 is
less than 90%, indicating that the ability of Cazorla-90 to satisfied
target is less than QoSMT’s. From this view, QoSMT provides best
performance predictability than all other policies. This is because

†IPCreal is the real IPC of HPT running in solo mode that we get it offline. IPCshare is
the IPC of HPT running in QoSMT

212

QoSMT: Supporting Precise Performance Control for SMT ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

Figure 7: HPT Normalized IPC
QoSMT can dynamically control all types of resources, protecting
HPT from contention on any resources.

FD-BS-CP-90 is very interesting. It simulates the policy of online
monitoring and adjustment with performance target 90% on an IBM
POWER8 machine. But it only obtain 82.2% average normalized IPC
for HPT, even being outperformed by QoSMT-85. This is because
FD-BS-CP-90 does not deal with back-end resource interference. It
also has less predictability (longer segment) than QoSMT. These
suggest that back-end resource control is necessary to performance
guarantee. We will have further discussions about the details in
§5.5.

To show that QoSMT does not hurt too much throughput with
performance guarantee, we calculate the overall normalized IPC on
Y-axis in Figure 6, which is the sum of normalized IPC of both HPT
and LPT. FR-BP-CS provides the highest overall normalized IPC
because of its balanced resource allocation. But as expected, it does
not provide an adequate ability of guarantee performance target.
Compared with policies that focus on guaranteeing performance,
We can see that QoSMT-95 achieves similar throughput to FD-
BS-CP-90. QoSMT-90 provides a better throughput than Cazorla-
90, where LPT can still get average 40% normalized IPC. Because
Cazorla-90 need a sampling phase dedicated for running in isolation
the HPT, which causes performance loss for LPT. In addition, the
coarse-grain resources partition of Cazorla-90 will also limit the
LPT’s performance. As for QoSMT, each operation of resource
allocation is based on fine-grain statistics of critical resource. These
suggest that QoSMT can achieve reasonable overall throughput
through a timely performance prediction and a effective dynamic
controlling mechanism, compared with state-of-the-art policies.

Note that our design is fully compatible with other policies,
because QoSMT provides a tuning mechanism between overall
throughput and HPT’s performance. This is achieved by configur-
ing the parameters of dynamic controlling mechanism introduced
in §4.3. For example, if overall throughput is preferred, one can
configure QoSMT similar to FR-BP-CS.

5.3 Further Analysis on 24 Pairs
To further understand the difference among these policies, Figure
7 lists the HPT performance of all the selected 24 pairs with the
expected performance target of 90%. Each pair is named as “X_Y“,
where “X“ is HPT and “Y“ is LPT. All pairs are sorted by the HPT
performance from left to right. Compared with Figure 6, Figure 7
implies two more conclusions.

First, QoSMT outperforms all other policies for most pairs. This
is because QoSMT provides dynamic control over all resources. The
performance of HPT varies between 85% - 95% with QoSMT.

Second, given an HPT, QoSMT can protect it from being inter-
fered by any other workloads. This can be concluded from the
observation that pairs with the same HPT are not far from each
other in Figure 7, since pairs are already sorted by the HPT per-
formance from left to right. For example, running with bwaves or
gobmk, GemsFDTD still keeps similar performance with QoSMT.

There is a special case which bwaves achieves a performance
greater than 100%. We find that there are large amount of floating
point branches in bwaves. They are not only hard to predict whether
it is taken or not, but also highly depend on prior floating point
instructions[15]. Therefore, floating point branches in bwaves will
be more likely to stay at the head of ROB. Then, the more instruc-
tions in ROB, the higher penalty a branch misprediction results in.
Hence bwaves performs better when ROB is smaller.

5.4 Effect of Prediction Mechanism
As shown in Figure 6 and Figure 7, some HPT workloads fail to
achieve the performance target. The main reason is that there is
a modeling error in the prediction mechanism. To demonstrate
the effect of prediction accuracy on achieving target, we show
the relationship of "prediction error" versus "expected target gap"
of the 24 pairs of QoSMT-90 in Figure 8, where the prediction
error and expected target gap are calculated as IPCsolo_predicted -
IPCsolo_real and IPCshare - 90%*IPCsolo_real respectively. From
Figure 8, the slope of QoSMT-90 is 1, which means expected target
gap is equal to its prediction error. The fewer the prediction error
is, the fewer the expected target gap will be.

We analyze the two sources of prediction error.
• From the aspect of mirco-architecture, a program’s behavior
under SMT mode is totally different from that under solo
mode. To obtain the cache behavior under solo mode as much
precise as possible, QoSMT already uses shadow tag. How-
ever, it is very difficult to obtain the pipeline behavior under
solo mode, due to the complexity of resource contention.
Therefore, the shadow queue mechanism will still introduce
certain amount of inaccuracy.
• The prediction method of QoSMT is inspired by PTA. PTA
uses MLP correction to achieve higher accuracy [12]. How-
ever, we can not get an application’s MLP without offline
profiling, so this correctness mechanism is not adopted in
QoSMT. This may be another source of inaccuracy of predic-
tion.

As for QoSMT-95, because there is a minimum quota for both
threads during resources allocation, QoSMT did not completely
guarantee the target in some workloads. For example, L1-D cache
have 4 ways, and the minimum quota is one way. In this case, at
most 3 ways can be allocated to HPT, which causes performance

213

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA X. Jin, Y. Zhou, B. Huang, Z. Yu, X. Zhan, H. Wang and S. Wang, N. Yu, N. Sun, Y. Bao

Figure 8: Relationship between prediction error and
achieved performance

loss. But this it is not common, and occurs where extremely high
performance is expected.

5.5 Effect of Dynamic Controlling
To have a better understanding about the need of dynamic con-
trolling on both front-end and back-end resources, we plot FD-
BS-CP-90 performance distribution in Figure 8, which only adopts
fetch-rate reallocation. If a policy is effective, the expected target
gap should be equal to its prediction error. As shown in Figure 8,
the distribution of QoSMT-90 conforms to our hypothesis, while
it is not the case for FD-BS-CP-90. That is, there are some situa-
tions, where FD-BS-CP-90 knows that the expected target has not
been satisfied, but it does not have enough ability to guarantee the
target performance. This implies the need of controlling back-end
resources, which can help to enforce the performance requirements
more effectively.

5.6 Evaluation of Response Time
The latency-sensitive application requires quick response time for a
performance guarantee policy. To demonstrate the effect of QoSMT
dynamic control mechanism on response time, we did an evaluation
of response time on the above 24 pairs. Figure 9 shows how long
it takes QoSMT to guarantee performance to meet the expected
target, where the expected target is 90% IPCsolo. As Figure 9 shows,
QoSMT-90 has a significantly faster response time than Cazorla-90.
For 90% of pairs, QoSMT only needs to spend less than 450000
cycles to meet the performance target. Taking 2Ghz cpu frequency
as an example, the response time of 90% is 225us. For Cazorla-90,
Its response time of 90% is 325us. Especially for cache-sensitive
workloads, the Cazorla-90 has almost twice the QoSMT response
time. We think there are two reasons for this result:1> In order to
predict solo-mode performance, Cazorla-90 needs to sample HPT
performance by exclusively running, and the sampling phase needs
to maintain a certain period to filter the impact of cache interfer-
ence on sampling accuracy. Thus it inevitably leads to a delay in
response time. By using the shadow solo-cycle accounting method-
ology, QoSMT can timely get the predicted IPC without the delay of
waiting for the sampling phase. 2> Cazorla adopts a coarse-grained
resource allocation method, like Fetch Rate and Issue bandwidth.
It doesn’t adjust for critical resources. Through the combination
of CMT and CRT, QoSMT can directly locate critical resources in
a fine-grained manner and find performance bottlenecks. For ex-
ample, for a cache sensitive workload, it would not be efficient to
allocate more issue bandwidth, while CMT could timely calculate
cache interferences, which would prompt QoSMT to allocate more
cache resources, thus providing a faster response time.

Figure 9: Response Time

5.7 Epoch length Choosing
Since QoSMT will adjust the resource allocation periodically, we
need to address the problem how to choose a suitable epoch length
to make QoSMTmore effective. We have observed that, if the length
is too short, QoSMT will not catch enough event to make a good
decision about resource allocation. On the other hand, if the length
is too long, QoSMT will not make timely decision to the contention
variation. We choose 10 pairs of benchmarks with 90% of perfor-
mance target, trying different epoch length among {1000, 2000, 5000,
10000, 20000, 40000} cycles. And 10000 cycles and 20000 cycles are
better than others from the view of overall performance. Users can
choose it according to actual needs. If the user is more concerned
about latency, 10000 cycles is preferred. If the user want to achieve
lower dynamic power, 20000 cycles is a better choice.

5.8 Overhead
There are three major concerns about adding QoSMT design into
the architecture of general SMT processors:
• How many extra latency is introduced?
• How many hardware resources are required ?
• How much extra power consumption is introduced?

Latency. QoSMT does not modify the basic architecture of the
pipeline logic. Based on our evaluation on GEM5, the added compo-
nents do not introduce extra latency at all. As Figure 4 shows, CRT
and CMT are located on non-critical path. For CDM, We need sig-
nals to gather contention information detected in distributed CDMs,
We add these signals along the pipe line with refer to data forward-
ing signals. In addition, the memory requests will be sent to shadow
tag and cache tag array simultaneously, they will individually work
without any impact on each other.

Resources. Our design introduces some new components, but
most of them are very cheap. The only costly component is the
shadow tag. In order to ensure the accuracy of interference de-
tecting, The size of shadow tags are as same as each level cache
tag. Other components’ overhead mainly depend on the number of
entries in each table:

(1) The CMT requires n × r bits, where n is the number of bits
per entry, r is the the maximum number of outstanding miss
allowed. For our design, each entry includes 1 bit valid signal,
1 bit interference judgement signal, and 18 bit TID. For L1
cache, the maximum number of outstanding miss allowed is
8, for L2 cache, the number is 32, which is (1 + 1 + 18) × (8
+ 8 + 32) = 960 bits for CMT;

(2) The CRT requires n × r bits, where n is the number of bits
per resources contention stall counter and r is the number
of contention resource, which is 64 × 8 = 512 bits;

214

QoSMT: Supporting Precise Performance Control for SMT ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

(3) There are four shadow queue counters for ROB, IQ, LQ, and
SQ. The shadow queue counters need log2 ROB + log2 IQ +
log2 LSQ , which is 23 bits in our design totally.

We evaluate the area overhead of QoSMT using McPAT[22]. The
area of the baseline chip based on ALPHA31264 is 47 mm2 under a
40nm process technology. The area overhead of L2 Shadowtag, L1
Shadowtag, CMT, and CRT in terms of percent (%) are 0.7%, 0.02%,
0.0047%, 0.0045% respectively.

Power.We use Wattch[5] to evaluate the power consumption.
The most power consumption component is L2 cache shadow tag,
which is 1.8 W , while other components power are 1.5W in total.
The sum power consumption accounts for 3.6% of total processors
power, where the total power of processor is 90 W.

5.9 Equal-Silicon-Area Performance
The area overhead of the shadow tag can be replaced with a 46KB
cache. To evaluate normalized performance to an equal-silicon-
area non-QoSMT design, we disable shadow tag mechanism and
increase the L1 Dcache capacity from 32KB to 128KB. The average
normalized IPC of equal-silicon-area non-QoSMT designs with 90%
target is 86%, which is worse than QoSMT90. To further evaluate
the benefit of shadow tag on eliminating cache interference, we
choose a cache sensitive workload hmmer in SPEC2006. When co-
runs with a memory-intensive workload mcf, the normalized IPC
of hmmer drops to 75%. Therefore, shadow tag combining with
dynamic cache partitioning is a key component to eliminate cache
interference. The area overhead is worth it.

6 RELATEDWORK
6.1 Industry Design
As shown in Table 1, IBM POWER processors adopts more aggres-
sive QoS support than Intel and AMD. Thus, we focus on IBM’s
design. Generally, IBM introduced two-level control mechanisms
[4] since POWER5 to enable software to adjust instruction fetch
rates for specific threads. [24] evaluates the effect of software con-
trolling approach on POWER5 and POWER6. Their results show
that the effect of software controlling is unstable across various mi-
crobenchmarks. While max priority can achieve 90%-100% HPT IPC,
the co-located LPT only receives as low as 2% - 9% of performance
in solo mode, indicating huge throughput/utilization loss.

6.2 Resources Contention and Modeling
Raasch et al. [26] revealed that industry-favored simple static parti-
tioning policies are able to achieve good overall throughput, but
they did not investigate the impact of static partitioning on guaran-
teeing performance of specific threads.

Cakarevic et al. [31] analyzed the impact of shared resources of
UltraSPARC T2 that is a somewhat different fine-grain multithread-
ing processor. But their results are unapplicable to mainstream SMT
processors because UltraSPARC T2’s architecture is pretty different
from Intel and AMD’s design.

Recent work SMiTe [33] uses a set of carefully designed mi-
crobenchmarks to perform offline sensitive analysis on various
shared resources of SMT cores, and then proposes a decent job
scheduler to avoid performance degradation of HPT.

6.3 Software Based Polices
Eyerman et al. [13] proposed a job scheduler based on sampling
mechanism along with hardware modification to achieve better
throughput on SMT processors. Feliu et al. proposed an improved
design [16] without hardware modification, but still focused on
overall throughput rather than performance guarantee.

6.4 Hardware based policies
The closest work to QoSMT is the design proposed in [6, 8]. For
their work, whether the prediction IPC is accurate depends on the
severity of the interference of LPT at the sampling stage. They
use warmup about 5K instructions procedure to filter the inter-
ference, however, it will cost millions of instructions to release
L2 cache interference. We did evaluate their design with memory
intensive benchmark as LPT, the result illustrated that the aver-
age performance decreased. In addition, QoSMT does not need a
time period of tens of thousands of cycles for sampling, hence is
more robust against frequent program phase changes. Transparent
thread also aims to maximize HPT’s performance with reasonable
overall throughput [11]. Unlike QoSMT, it does not support precise
performance control based on user-defined target. There are many
studies [7][30][9][10][27] providing solutions on improving overall
SMT throughput and fairness, but they did not take performance
control into account. Eyerman et al. [12] proposed the per-thread
cycle accounting (PTA) mechanism that is able to estimate a work-
load’s solo performance in a co-running mode on SMT processors.
QoSMT leverages this concept to perform performance prediction.

7 CONCLUSION
This paper presents QoSMT methodology, which enables precise
performance guarantee for given performance targets on SMT core.
Based on our investigation on the behavior of interference induced
by SMT, we find that it is difficult to meet the variable resource
requirements for a logical thread through static resource allocation.
As a consequence, we design a critical in-core resources identifi-
cation mechanism and a solo IPC predictor to direct a closed-loop
mechanism to dynamically allocate the resources for target thread.
We implemented a QoSMT prototype based on GEM5 simulator.
As illustrated in our experiment, compared with the state-of-the-
art, QoSMT are able to enforce a precise performance control for
specific IPC targets.

8 ACKNOWLEDGEMENT
We would like to thank anonymous reviewers for their valuable
feedbacks and suggestions. We thank our group members, Wenbin
Lv, Zhigang Liu, Tianni Xu, Zhiyuan Yan for their help on this
work. Especially thank Lan Xiao for her silently concern. This work
was supported in part by National Key R&D Program of China
(2016YFB1000201), and the National Natural Science Foundation of
China (Grant No. 61420106013 and 61702480), and Primary Research
& Development Plan of Shaanxi Province(2019TSLGY08-03) and
Youth Innovation Promotion Association of Chinese Academy of
Sciences (2013073).

215

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA X. Jin, Y. Zhou, B. Huang, Z. Yu, X. Zhan, H. Wang and S. Wang, N. Yu, N. Sun, Y. Bao

REFERENCES
[1] Alibaba. 2018. Alibaba Innovative Research. https://102.alibaba.com/fund/

proposalAbout.htm.
[2] AMD. 2016. The Zen Core Architecture AMD. http://www.amd.com/en-gb/

innovations/software-technologies/zen-cpu.
[3] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH Computer Architecture
News 39, 2 (2011), 1–7.

[4] C. Boneti, F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu, C. Y. Cher, and M. Valero.
2008. Software-Controlled Priority Characterization of POWER5 Processor.
In 2008 International Symposium on Computer Architecture. 415–426. https:
//doi.org/10.1109/ISCA.2008.8

[5] David M. Brooks, Vivek Tiwari, and Margaret Martonosi. 2000. Wattch: a frame-
work for architectural-level power analysis and optimizations. In 27th Inter-
national Symposium on Computer Architecture (ISCA 2000), June 10-14, 2000,
Vancouver, BC, Canada. 83–94.

[6] Francisco J. Cazorla, Peter M. W. Knijnenburg, Rizos Sakellariou, Enrique Fer-
nandez, Alex Ramirez, and Mateo Valero. 2006. Predictable Performance in SMT
Processors: Synergy Between the OS and SMTs. IEEE Trans. Comput. 55, 7 (July
2006), 785–799. https://doi.org/10.1109/TC.2006.108

[7] Francisco J. Cazorla, Alex Ramirez, Mateo Valero, and Enrique Fernandez. 2004.
Dynamically Controlled Resource Allocation in SMT Processors. In Proceedings of
the 37th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
37). IEEE Computer Society, Washington, DC, USA, 171–182. https://doi.org/10.
1109/MICRO.2004.17

[8] F. J. Cazorla, A. Ramirez, M. Valero, P. M. W. Knijnenburg, R. Sakellariou, and
E. Fernandez. 2004. QoS for high-performance SMT processors in embedded
systems. IEEE Micro 24, 4 (July 2004), 24–31. https://doi.org/10.1109/MM.2004.37

[9] Seungryul Choi and Donald Yeung. 2006. Learning-Based SMT Processor Re-
source Distribution via Hill-Climbing. SIGARCH Comput. Archit. News 34, 2 (May
2006), 239–251. https://doi.org/10.1145/1150019.1136507

[10] Seungryul Choi and Donald Yeung. 2009. Hill-climbing SMT Processor Resource
Distribution. ACM Trans. Comput. Syst. 27, 1, Article 1 (Feb. 2009), 47 pages.
https://doi.org/10.1145/1482619.1482620

[11] Gautham K. Dorai and Donald Yeung. 2002. Transparent Threads: Resource
Sharing in SMT Processors for High Single-Thread Performance. In Proceedings
of the 2002 International Conference on Parallel Architectures and Compilation
Techniques (PACT ’02). IEEE Computer Society, Washington, DC, USA, 30–. http:
//dl.acm.org/citation.cfm?id=645989.674324

[12] Stijn Eyerman and Lieven Eeckhout. 2009. Per-thread Cycle Accounting in SMT
Processors. SIGPLAN Not. 44, 3 (March 2009), 133–144. https://doi.org/10.1145/
1508284.1508260

[13] Stijn Eyerman and Lieven Eeckhout. 2010. Probabilistic Job Symbiosis Modeling
for SMT Processor Scheduling. SIGPLAN Not. 45, 3 (March 2010), 91–102. https:
//doi.org/10.1145/1735971.1736033

[14] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith. 2006.
A performance counter architecture for computing accurate CPI components.
(2006), 175–184. https://doi.org/10.1145/1168857.1168880

[15] Stijn Eyerman, James E. Smith, and Lieven Eeckhout. 2006. Characterizing the
branch misprediction penalty. In 2006 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software, ISPASS 2006, March 19-21, 2006, Austin,
Texas, USA, Proceedings. 48–58.

[16] J. Feliu, S. Eyerman, J. Sahuquillo, and S. Petit. 2016. Symbiotic job scheduling on
the IBM POWER8. In 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 669–680. https://doi.org/10.1109/HPCA.2016.
7446103

[17] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions. SIGARCH
Comput. Archit. News 34, 4 (Sept. 2006), 1–17. https://doi.org/10.1145/1186736.
1186737

[18] INTEL. 2005. Introduction to Cache Allocation Technology in the Intel
Xeon Processor E5 v4 Family. https://software.intel.com/en-us/articles/
introduction-to-cache-allocation-technology.

[19] INTEL. 2016. 64-ia-32-architectures-software-developer-vol-3b-part-2-manual.
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf.

[20] S. Jasmine Madonna, Satish Kumar Sadasivam, and Prathiba Kumar. 2015.
Bandwidth-Aware Resource Optimization for SMT Processors. Springer Interna-
tional Publishing, Cham, 49–59.

[21] D. Koufaty and D. T. Marr. 2003. Hyperthreading technology in the netburst
microarchitecture. IEEE Micro 23, 2 (March 2003), 56–65. https://doi.org/10.1109/
MM.2003.1196115

[22] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, DeanM. Tullsen, and
Norman P. Jouppi. 2009. McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures. In 42st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-42 2009), December 12-16,
2009, New York, New York, USA. 469–480. https://doi.org/10.1145/1669112.1669172

[23] Microsoft. 2017. Azure SQL Database. https://azure.microsoft.com/en-us/pricing/
details/sql-database/elastic/.

[24] A. Morari, C. Boneti, F. J. Cazorla, R. Gioiosa, C. Y. Cher, A. Buyuktosunoglu,
P. Bose, and M. Valero. 2013. SMT Malleability in IBM POWER5 and POWER6
Processors. IEEE Trans. Comput. 62, 4 (April 2013), 813–826. https://doi.org/10.
1109/TC.2012.34

[25] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood,
and Brad Calder. 2003. Using SimPoint for Accurate and Efficient Simulation.
SIGMETRICS Perform. Eval. Rev. 31, 1 (June 2003), 318–319. https://doi.org/10.
1145/885651.781076

[26] Steven E. Raasch and Steven K. Reinhardt. 2003. The Impact of Resource Parti-
tioning on SMT Processors. In Proceedings of the 12th International Conference on
Parallel Architectures and Compilation Techniques (PACT ’03). IEEE Computer Soci-
ety, Washington, DC, USA, 15–. http://dl.acm.org/citation.cfm?id=942806.943858

[27] Joseph Sharkey, Deniz Balkan, and Dmitry Ponomarev. 2006. Adaptive Reorder
Buffers for SMT Processors. In Proceedings of the 15th International Conference on
Parallel Architectures and Compilation Techniques (PACT ’06). ACM, New York,
NY, USA, 244–253. https://doi.org/10.1145/1152154.1152192

[28] Balaram Sinharoy, Ronald N Kalla, Joel M Tendler, Richard J Eickemeyer, and
Jody B Joyner. 2005. POWER5 system microarchitecture. IBM journal of research
and development 49, 4.5 (2005), 505–521.

[29] Balaram Sinharoy, JA Van Norstrand, Richard J Eickemeyer, Hung Q Le, Jens
Leenstra, Dung Q Nguyen, B Konigsburg, K Ward, MD Brown, José E Moreira,
et al. 2015. IBM POWER8 processor core microarchitecture. IBM Journal of
Research and Development 59, 1 (2015), 2–1.

[30] Hans Vandierendonck and André Seznec. 2011. Managing SMT Resource Usage
Through Speculative Instruction Window Weighting. ACM Trans. Archit. Code
Optim. 8, 3, Article 12 (Oct. 2011), 20 pages. https://doi.org/10.1145/2019608.
2019611

[31] Vladimir Čakarević, Petar Radojković, Javier Verdú, Alex Pajuelo, Francisco J.
Cazorla, Mario Nemirovsky, andMateo Valero. 2009. Characterizing the Resource-
sharing Levels in the UltraSPARC T2 Processor. In Proceedings of the 42Nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO 42). ACM, New
York, NY, USA, 481–492. https://doi.org/10.1145/1669112.1669173

[32] Ricardo A Velásquez, Pierre Michaud, and André Seznec. 2013. Selecting bench-
mark combinations for the evaluation of multicore throughput. In Performance
Analysis of Systems and Software (ISPASS), 2013 IEEE International Symposium on.
IEEE, 173–182.

[33] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang. 2014. SMiTe: Precise QoS
Prediction on Real-System SMT Processors to Improve Utilization in Warehouse
Scale Computers. In 2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture. 406–418. https://doi.org/10.1109/MICRO.2014.53

216

https://102.alibaba.com/fund/proposalAbout.htm
https://102.alibaba.com/fund/proposalAbout.htm
http://www.amd.com/en-gb/innovations/software-technologies/zen-cpu
http://www.amd.com/en-gb/innovations/software-technologies/zen-cpu
https://doi.org/10.1109/ISCA.2008.8
https://doi.org/10.1109/ISCA.2008.8
https://doi.org/10.1109/TC.2006.108
https://doi.org/10.1109/MICRO.2004.17
https://doi.org/10.1109/MICRO.2004.17
https://doi.org/10.1109/MM.2004.37
https://doi.org/10.1145/1150019.1136507
https://doi.org/10.1145/1482619.1482620
http://dl.acm.org/citation.cfm?id=645989.674324
http://dl.acm.org/citation.cfm?id=645989.674324
https://doi.org/10.1145/1508284.1508260
https://doi.org/10.1145/1508284.1508260
https://doi.org/10.1145/1735971.1736033
https://doi.org/10.1145/1735971.1736033
https://doi.org/10.1145/1168857.1168880
https://doi.org/10.1109/HPCA.2016.7446103
https://doi.org/10.1109/HPCA.2016.7446103
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://doi.org/10.1109/MM.2003.1196115
https://doi.org/10.1109/MM.2003.1196115
https://doi.org/10.1145/1669112.1669172
https://azure.microsoft.com/en-us/pricing/details/sql-database/elastic/
https://azure.microsoft.com/en-us/pricing/details/sql-database/elastic/
https://doi.org/10.1109/TC.2012.34
https://doi.org/10.1109/TC.2012.34
https://doi.org/10.1145/885651.781076
https://doi.org/10.1145/885651.781076
http://dl.acm.org/citation.cfm?id=942806.943858
https://doi.org/10.1145/1152154.1152192
https://doi.org/10.1145/2019608.2019611
https://doi.org/10.1145/2019608.2019611
https://doi.org/10.1145/1669112.1669173
https://doi.org/10.1109/MICRO.2014.53

	Abstract
	1 Introduction
	2 Background
	2.1 SMT's Pros and Cons
	2.2 Resource Contention on SMT
	2.3 Commodity Processors' Efforts

	3 Observations on SMT Interference
	3.1 Static Partitioning
	3.2 Demand of Dynamic Resource Partitioning

	4 Design of QoSMT
	4.1 Critical Resource Detection Mechanism
	4.2 Performance Prediction Mechanism
	4.3 Dynamic Controlling

	5 evaluation
	5.1 Experiment setup
	5.2 Evaluation of Different Performance Target
	5.3 Further Analysis on 24 Pairs
	5.4 Effect of Prediction Mechanism
	5.5 Effect of Dynamic Controlling
	5.6 Evaluation of Response Time
	5.7 Epoch length Choosing
	5.8 Overhead
	5.9 Equal-Silicon-Area Performance

	6 Related Work
	6.1 Industry Design
	6.2 Resources Contention and Modeling
	6.3 Software Based Polices
	6.4 Hardware based policies

	7 Conclusion
	8 ACKNOWLEDGEMENT
	References

