
Computer Organization and Design Course with FPGA Cloud
Ke Zhang, Yisong Chang, Mingyu Chen, Yungang Bao, Zhiwei Xu

State Key Laboratory of Computer Architecture, ICT, CAS
University of Chinese Academy of Sciences (UCAS)

Beijing, China
{zhangke,changyisong,cmy,baoyg,zxu}@ict.ac.cn

ABSTRACT
Computer Organization and Design (COD) is a fundamentally re-
quired early-stage undergraduate course in most computer science
and engineering curricula. During the two sessions (lecture and
project part) of one COD course, educational platforms play an
important role in cultivating students’ computational thinking,
especially the ability of viewing the hardware and software in a
computer system as a whole (computer system thinking ability for
short in this paper). In order to improve teaching quality, in this
paper, we discuss the deployment of an inexpensive in-house Field
Programmable Gate Array (FPGA) cloud platform, which can pro-
vide students with hardware-software co-design methodology and
practice. The platform includes 32 FPGA nodes and the scale can
be dynamically changed. Each cloud node is heterogeneously com-
posed of an ARM processor and a tightly-coupled reconfigurable
fabric to provide students with hands-on hardware and software
programming experiences. We illustrate our efforts to make the
FPGA cloud as an easy-to-use resource pool to elastically support
a class with 92 undergrads via Internet access and to monitor stu-
dents’ experimental behaviors. We also present key insights in our
teaching activities that indicate such appliance is feasible to provide
practice of both basic principles and emerging co-design techniques
for students. We believe that our cost-effective FPGA cloud is of
significant interests to educators looking forward to improving
computer system-related courses.

CCS CONCEPTS
• Applied computing → Education; • Computer systems or-
ganization; • Hardware → Reconfigurable logic and FPGAs;
Hardware-software codesign; • Networks → Cloud comput-
ing;

KEYWORDS
FPGA Cloud, Computer Organization and Design, Computer Sys-
tem Education, Hardware-Software Co-design
ACM Reference Format:
Ke Zhang, Yisong Chang, Mingyu Chen, Yungang Bao, Zhiwei Xu. 2019.
Computer Organization and Design Course with FPGA Cloud. In SIGCSE’19:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE’19, February 27–March 2, 2019, Minneapolis, MN, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5890-3/19/2. . . $15.00
https://doi.org/10.1145/3287324.3287475

50th ACM Technical Symposium on Computer Science Education, February
27–March 2, 2019, Minneapolis, MN, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3287324.3287475

1 INTRODUCTION
Computer Organization and Design (COD) is an early-taught un-
dergraduate course that typically covers fundamental CPU design
principles, instruction set architecture (ISA), assembly language and
input/output interfacing in both lecture and project sessions. As a
key component in ACM computer engineering curriculum [1], COD
is essentially required to teach students the concepts of hardware
and software as well as the synergy of both parts in a computer
system.Moreover, COD gradually attracts attention in computer sci-
ence undergraduate programs (e.g., ACM’s 2013 curriculum guide-
lines [2]) as either a required course or an elective to show an
abstraction of hardware from a programmer’s perspective.

In the COD lab course, students are required to fully understand
and carefully apply abstract concepts they learnt in lectures to
practicing ordinary low-level software programming in assembly
and C language or even advanced hardware logic design. Therefore,
compared with other traditional lecture-centric courses, the COD
course largely depends on educational platforms to provide real
and interactive engineering environments for students to conduct
hands-on experiments. As a result, it is crucial for educators and
instructors to elaborately design and massively use educational
platforms in both lecture and project sessions of a COD course in
order to cultivate students’ computational thinking [34], especially
ability of viewing the hardware and software in a computer system
as a whole (computer system thinking ability for short).

A) Using new hardware in COD platforms
The evolution of modern computer systems has been widely in-

spired by emerging heterogeneous acceleration and domain-specific
architecture [14]. This trend emphasizes the key importance of
hardware-software co-design to all participants in the field of com-
puter system [3]. Therefore, besides basic software programming,
students are strongly recommended to study hardware design prin-
ciples and the co-design concepts as early as possible in computer
system-related courses and especially in the early-stage COD class,
improving their computer system thinking ability. Given the state-
of-the-art heterogeneous computing systems, we argue that the
key challenge to further improve teaching effects by manifesting
system-level hardware-software co-design in COD courses lies in the
exploitation of an appropriate educational platform that provides
heterogeneous co-design capability for students.

In traditional COD courses, software ISA simulators [7, 17, 22, 32]
are widely used as experimental environments for students’ writing

1First authors Zhang and Chang have made equal contributions to this work.

Paper Session: Systems SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

927

https://doi.org/10.1145/3287324.3287475
https://doi.org/10.1145/3287324.3287475

and executing low-level programs. However, such virtual platform
not only inherently restricts execution time and flexibility, but also
exhibits an incomplete system view to students due to the shortage
of real hardware components. The avant-grade single-board com-
puters based on System-on-Chip (SoC) [28, 31] provide software
execution environment on real hardware platforms but lack capabil-
ity to integrate additional hardware accelerators. Similarly, despite
suitability for hardware-related experiments, Field Programmable
Gate Array (FPGA)-based development boards [9, 26] fail to support
complicated software development.

Fortunately, a heterogeneous FPGA (e.g., Xilinx’s Zynq Ultra-
Scale+ MPSoC [36]) which has been just commercially available
can overcome all the above-mentioned shortcomings. This hybrid
device tightly couples a high-performance, software-programmable
hard core SoC (commonly based on ARM processor) with a reconfig-
urable logic fabric on the same chip die. Such configuration has been
confirmed in setting up a feasible experimental platform for embed-
ded system-related courses [25, 33]. We believe that heterogeneous
FPGAs are more appropriate and cost-effective as educational plat-
forms to demonstrate the concept of hardware-software co-design
and deliver related experimental environment in COD courses.

B) Introducing cloud computing to COD platforms
Instructors of COD courses used to hand out each student one

hardware experimental kit that would be connected to his or her
laptop during projects. Due to different progresses of students’ ex-
perimental projects, 1) status of dozens of kits are diverse, and 2)
the number of simultaneously in-use kits is frequently changed.
These two factors lead to a low utilization rate of the experimen-
tal kits. In addition, each student conducts projects privately in
the laptop with an attached hardware kit, making his or her ex-
perimental behaviors entirely invisible to instructors. Motivated
by emerging cloud computing technology, we believe that these
situations would be improved if we could make experimental kits
as a pool of remotely accessed resources that can be unilaterally
provisioned and automatically monitored. Some preliminary cloud-
based experimental platforms [10, 24, 37, 38] were established to
provide remotely accessed development kits for students.

C) Why not commercial public FPGA cloud?
Cloud vendors have provided FPGAs as public acceleration re-

sources for users to rent (e.g., Amazon’s AWS F1 instance [4]). From
our perspective, such public FPGA cloud exhibits several drawbacks
in COD teaching:

1) Expensive economic costs to deploy the same number of FP-
GAs as in our in-house FPGA cloud within a semester. Note that the
purpose of public FPGA cloud is mostly for accelerating web ser-
vices, so the FPGA devices used in public cloud are always high-end
and costly products,

2) Complicated FPGA development and configuration flow in
public cloud that requires students to learn additional skills non-
related to the COD course,

3) The execution environment of FPGA cloud is mainly based on
virtual machines (VMs) running on the remote server, introducing
unpredictable penalties and inter-VM contentions for various users.

D) Putting it all together
In this paper, we propose an in-house heterogeneous FPGA-

enabled cloud platform with multiple nodes (32 for our current
implementation) connected via Gigabit Ethernet for teaching COD

courses in both lecture and project. Each node is an inexpensive
custom circuit board based on Xilinx Zynq UltraScale+ MPSoC
which provides both hardware and software programmability in a
single board for students with the cost of only $950. We make each
physical node with a fully-fledged Linux kernel and related envi-
ronment atop the ARM SoC as a general cloud resource in which
students can configure FPGA fabric, interact with logic modules in
FPGA and launch software applications. All available resources are
managed and scheduled via Ethernet by a commercial-grade cloud
computing framework on a front-end x86 server. A pre-configured
user-end VM running on each student’s laptop provides standard
toolchains of both hardware and software development. Unlike
the server-end VMs for execution in public FPGA cloud, in such
user-end VM, students use a simple script-based design flow to
compile their FPGA designs and software programs offline, request
an experimental cloud resource, and transparently upload the gen-
erated FPGA configuration files as well as executable binaries to
the requested resource for execution via campus network. In or-
der to fully achieve teaching objectives in both computer science
and engineering curricula and comprehensively demonstrate the
concepts of hardware-software co-design on our FPGA cloud, we
propose an exploratory assignment on ISAs and a live demo about
details of network packets processing in our COD lectures, as well
as experimental projects that cover both fundamental principles
and emerging techniques. Some key advantages our FPGA cloud
provides for teaching COD course include:

Ease of use and maintenances. The cloud platform allows stu-
dents to conduct projects as using local experimental kits without
resource contention between each other, making it possible to carry
out performance-related studies on remote hardware. Moreover, our
FPGA cloud platform can be simply managed by teaching assistants
of the COD course, without additional engineering efforts.

Elasticity and low cost. Resource pooling dynamically adjusts
the number of available resources as per students’ demands to
afford a class of 92 students to conduct projects within the scope of
only 32 nodes, significantly saving the infrastructural budget.

Teaching Assistance. Detailed execution behaviors of each stu-
dent are monitored and logged in the cloud. Such information
indicates learning outcomes of one student, helping instructors
make individual teaching policies for different students.

2 BACKGROUND
Conventional COD courses mainly concentrate on how to teach
students hardware abstraction from a software programmer’s point
of view, thus emphasizing the importance of ISAs and relevant as-
sembly programming in experimental projects. With the minimum
economic cost and educators’ efforts, the software ISA simulator is
a good choice for students to use, which is even leveraged today
in some representative COD-like courses [29, 30]. As the rise of
inexpensive hardware single-board computers such as Raspberry Pi,
some educators have asked their students to conduct experiments
on such platforms [21, 27].

On the other hand, emphasizing hardware design in COD course
offers a new bottom-up perspective to students to fully understand
computer systems instead of pure ISAs. In experimental projects of
such class, students are required to implement their preliminary

Paper Session: Systems SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

928

Up to 32 FPGA
nodes in one chassis

Three cascaded
Ethernet switches

Power Meter

FPGA
Chip

Custom-designed

board based on

Xilinx’s Zynq

UltraScale+ MPSoC

Front-end Server (x86)

Student
VM

. . .

Campus Network

Student
VM

Ethernet Switches

MPSoC FPGAARM

FPGA Cloud Custom Chassis

Figure 1: Our proposed FPGAcloud architecture and onepro-
totype chassis with 32 individual physical FPGA nodes that
is large enough to support our COD class with 92 students.

CPU cores using a hardware description language (HDL) such as
Verilog HDL. However, these CPU cores are always verified just in
HDL behavioral simulation and logic synthesis rather than imple-
mented to run on real hardware [18, 29, 30]. Although real-world
FPGAs are involved in some classes [5, 6, 8, 11, 13, 15, 16, 23], it is
still extremely difficult for early undergrads to independently afford
the task of organizing a minimum runnable system that wraps their
CPU cores to various I/O components (e.g., memory, UART, etc.)
with standard interfaces. This task always requires a significant
amount of FPGA-specific knowledge and sufficient hardware design
experiences that are out of the range of COD course.

In summary, existing experimental platforms in COD-related
courses rarely offer students a real-world executable system-level
environment with an easy-to-use interface to help them fully un-
derstand computer systems.

3 FPGA CLOUD IN COD COURSE
In this section, we introduce our proposed FPGA cloud architecture
as well as one prototype chassis, and related methods to provide
an easy-to-use interface for students. Based on the FPGA cloud, we
discuss improvements in both lectures and projects of our COD
course to emphasize hardware-software co-design.

3.1 Architectural and Technical Overview
Figure. 1 depicts our proposed FPGA cloud architecture and one
in-house chassis in which at maximum 32 nodes based on custom
circuit boards using Xilinx’s Zynq UltraScale+ MPSoC FPGAs are
interconnected via three cascaded Ethernet switches. More chassis
can be cascaded for larger class. The design objective of our FPGA
cloud is to effectively abstract platform details and agilely help
students to leverage the FPGA cloud in campus via an user-friendly
Ethernet-accessible interface, avoiding unnecessary efforts that
negate students’ concentration on the COD course.

First, we leverage and modify a commercial-grade cloud resource
management framework—OpenStack [20] to provision each physi-
cal node in the custom chassis as a general cloud resource. As shown
in the left part of Figure. 2, the modified OpenStack controller runs
on the front-end x86 server to communicate with hardware con-
trol planes in FPGA chassis and provides APIs to allow students
to request and release resources on-demand using either webpage
or command line via Ethernet. OpenStack maintains a database of

Cloud
Usage

Software
Design

Hardware
Design

Front-end Server (x86)

FPGA Cloud
Resource
Controller

Resource
Database

FP
G

A
 N

od
e

 0

FP
G

A
 N

od
e

 1

FP
G

A
 N

od
e

 3
1

. . .

FPGA Cloud Custom Chassis

Student
VM

APIs

Chassis Control Plane

FP
G

A
 N

od
e

 2

GNU MAKE Command Line

Project Source Code Repository

Script-based Design Flow

Figure 2: Efforts to provide an easy-to-use FPGA cloud ser-
vice. An OpenStack-enabled resource manager (left part) al-
lows students’ remote access to the allocated FPGA node (ar-
rowed dash line). A scripted design flow on each student’s
VM (right part) simplifies FPGA development and usage.

information of all physical nodes in the FPGA cloud, both in use
and available for elastic allocation and release.

Second, in order to remove numerous FPGA design complexities
for students, we implement a bunch of pre-built scripts that runs
inside the commercial FPGA design tool (i.e., Xilinx’s Vivado [35] in
our current COD course) in the VM to automatically setup an FPGA
project with static logic of complex I/O components surrounding
students’ synthesizable HDL designs and to strictly execute key
design flow steps, making students purely concentrate on their
HDL design that are strongly related to the contents of COD course.
We further spread such script-based design flow via standard GNU
MAKE command line to uniformly cover FPGA hardware develop-
ment, software compilation and FPGA cloud usage (right part of
Figure. 2). By this means, complicated experimental procedures are
abstracted into one single and simple MAKE command, saving a large
amount of efforts for students to carry out projects via the FPGA
cloud. Moreover, all relevant source files and scripts in an experi-
mental project are organized into a repository hosted on GitHub
Classroom [12]. Therefore, all students’ behaviors are committed in
the repository to trace variations of one student’s ability in different
phase of COD course and make just-in-time guidance.

3.2 Usage in Lectures
Rigid oral explanations in conventional COD lectures leave students
far away from real systems, making it difficult to understand some
knowledge units that requires hardware-software collaboration. Al-
though hands-on experiments relieve such situation to some extent,
they are still unable to cover all relevant key points mentioned in
the lecture class. In order to fill such gap, we attempt to propose an
exploratory assignment as well as a live demo based on our FPGA
cloud as supplementaries in lectures of our COD course.

Exploratory Assignment. As a fundamental interface between
hardware and software, ISA is a strongly required knowledge unit
in COD courses. This point is especially important to computer
science students to understand hardware and computer system, as
they have rare opportunities to engage in hardware-related courses.

Consequently, we push students to make a comprehensive com-
parison among ISAs of x86, ARM, MIPS and the emerging RISC-V

Paper Session: Systems SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

929

ARM Processor

Memory

DMA Engine

Network Interface

Network Protocol Stack

Network Interface
Device Driver

Interrupt Handler
Software

SoC
Student’s Laptop

(sending out “ping”)

Interrupt Controller

On-Chip Interconnect

FPGA
Fabric

FPGA Cloud Node (receiving “ping”)

Campus
Network

Figure 3: Full system stack on an FPGA cloud node to demon-
strate system-level details when processing a “ping” net-
work packet as a live demo in lectures of our COD course.

in basic assembly blocks, segmentations in binary object and ex-
ecutable files, endianness, application binary interface (ABI) and
stack management based on practical compilation as well as analy-
sis of binary files. Students use the standard GCC compilers and
related binutils for x86 and ARM ISAs in the operating systems
on each student’s VM and the requested cloud resource respec-
tively, as well as GCC cross-compiling environments for MIPS and
RISC-V pre-deployed in the VMs. We provide a series of standard
micro-benchmarks written in C language and encourage students
to custom-design some other programs for comparison.

Live Demo. Advanced input/output interfacing, mainly includ-
ing direct memory access (DMA) and interrupt, is an essential sys-
tem concept that deeply relies on hardware-software collaboration.
Due to shortage in real application scenario, it is very difficult for
students to understand this key concept just according to descrip-
tions in COD textbook. Moreover, such knowledge unit is rarely
involved in a COD experimental project since students are required
to learn a huge amount of additional knowledge out of the range of
COD course. As a result, in our lecture in COD course, we build a
live demo about details of network packet processing on real-world
hardware-software full system stack inside our FPGA cloud plat-
form, which is interactively visible to students for observation of
system-level I/O processing behaviors. To make the demo easily to
understand, we select ping, a common networking utility students
are familiar to use in daily life as an illustrative example. We also
abstractly introduce some easy-to-understand concepts of network
protocol stack and device driver in our COD course in advance.

Figure. 3 briefly describes the full system stack in one FPGA
cloud node and the hardware network processing path in a student’s
laptopwith the VM. For students’ hardware visibility, we implement
a network interface and its related DMA engine in the FPGA fabric
of each physical cloud node. System-level information of this newly-
involved network interface is configured during resource allocation.
Meanwhile, students are enabled to observe operations in ARM-
end operating system via traces logged by pre-modifications in
kernel-level network device driver and protocol stack.

After obtaining the IP address of an allocated FPGA cloud re-
source, one student executes a GNU MAKE command in the VM to
launch the FPGA development tool GUI that automatically prepares
the environment for remote signal probing of key hardware ports
from network interface and DMA engine. The student then sends

Table 1: FPGA cloud-inspired COD lab projects

Project name and brief description
1 Basis of Assembly Language: Function call routine and stack management
2 Basic CPU Design: Register file, ALU and single-cycle CPU

3
Advanced CPU Design:Multi-cycle CPU with interface to
DDR memory and UART

4 Performance Evaluation: Hardware performance counter design
5 Memory Hierarchy (Optional): Instruction and data cache

6
Domain-Specific Architecture (Optional): Custom deep convolutional
neural network accelerator with DMA interface

ARM
Processor

Memory
Controller

On-Chip Interconnect

Memory Interface

Student’s HDL Design
(Dynamic Region)

Ethernet
SoC

FPGA Fabric

FPGA Conf.
&

Status
Management

UART
&

GPIO

UART

Figure 4: A template architecture in FPGA cloud node to fa-
cilitate easy integration of students’ HDL design into a min-
imum runnable system.

out a “ping” packet to the obtained IP address. When the “ping”
packet is injected into the network interface of the cloud node,
variations of hardware signals are displayed in the GUI in time,
allowing students to observe packet movements in hardware data
path. Traces in the operating system allow students to clearly under-
stand life cycles of network packets and motivate students to obtain
insights in the approaches of hardware-software interactions.

3.3 Usage in Labs
Based on our FPGA cloud, we redesign the projects in our COD
labs as shown in Table. 1. The main target is to push students
to make their outcomes in these projects executable in an actual
hardware-software environment, instead of a pure simulation.

In the first experimental project, students are disciplined in soft-
ware programming abilities within hybrid assembly and C language
on the ARM processors of cloud nodes, which emphasizes the most
fundamental concepts of function call routine and runtime stack
management. In this manner, students are driven to deeply un-
derstand the hardware interface from a programmer’s perspective.
If educators would like to extend such project arrangement with
more software-oriented experiments, existing projects based on
conventional platforms like Raspberry Pi or x86 are also inherently
supported in our FPGA cloud without modifications to run atop the
high-performance ARM processor. Moreover, exclusive occupancy
of one physical cloud node guarantees students to conduct further
software performance studies.

In the following projects, students are guided to implement syn-
thesizable hardware components in the FPGA fabrics and make
it executable with software collaborations. In order to simplify
students’ design efforts in such hardware-centric projects, we pro-
pose a template architecture in our FPGA cloud node as shown
in Figure. 4. Based on such template, students are encouraged to

Paper Session: Systems SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

930

0

5

10

15

20

25

30

N
um

be
r o

f C
on

cu
rr

en
t U

se
rs

Figure 5: The number of in-use nodes in the FPGA cloud
measured every 20 seconds during the 2018 Spring semester
in which our COD course carried on, and short Summer se-
mester to conduct students’ research projects, respectively.
The X-axis is cataloged into each day during both semester.

implement custom CPU cores in the dynamic region based on either
conventional MIPS or emerging RISC-V ISA to practice fundamen-
tal CPU design principles. Custom cores share the same address
space of DDR4 memory populated on the FPGA circuit board with
the ARM processor. In this manner, ARM processor is leveraged
as an auxiliary engine that is easily driven by students in their
VM-based development environment, taking charge of FPGA con-
figuration, data and program loading, UART communication, status
management and hardware debugging of students’ cores. Under-
grads are also required to implement a C language-based software
framework running atop custom CPU cores to allow applications
access memory-mapped hardware UART and GPIO interfaces.

Students are cultivated with the quantitative approach via a
project towards design of hardware performance counters. Based
on performance evaluation results, students optionally optimize the
memory hierarchy of their CPU cores via instruction and data cache.
Students also electively involve in design of deep convolutional
neural network accelerators in the dynamic region of template ar-
chitecture as well as implement an ARM-end full software stack
incorporatingwith accelerators. By thismeans, students acquire pre-
liminary skills in heterogeneous acceleration and domain-specific
architecture design.

After disciplined with these experimental projects in a full se-
mester, outstanding students in our COD course afford to further
conduct research projects independently on our FPGA cloud in
the short terms during summer vacations, some of which were
highlighted in one tutorial [19] we held in ISCA 2018 (one of the
flagship annual academia conferences in computer architecture).

4 TEACHING PRACTICE AND DISCUSSION
In this section, we mainly discuss some key observations we acquire
from teaching practice in our COD course with the FPGA cloud in
the Spring and Summer semester of 2018 to illustrate the efficiency
and feasibility of our FPGA cloud as an easy-to-use infrastructure
in motivating students to study computer system-related courses.

The number of concurrent users (Y-axis) monitored in our cloud
appliance is chronologically plotted in Figure. 5. We used Linux
shell scripts persistently running on the front-end server with our
OpenStack-based resource controller to acquire howmany students
were using this platform every 20 seconds and log the data for the

75.23
80.20

69.93

44.26

0

20

40

60

80

100

#1: Basic of
Assembly
Language

#2: Basic CPU
Design

#3: Advanced
CPU Design

#4: Performance
Evaluation

Average Scores

Figure 6: Average score (100-point grading system) of each
required project in our class as declared in Table. 1.

whole 2018 Spring and Summer semester (160 days, 690K log entries
in total). In this figure, several spikes can be recognized around
2018/3/31, 4/14, 5/19, 6/16 and 7/7, which are due dates for each
project. The maximum number in this plot is 24, which means 24
FPGAs in the cloud were simultaneously occupied and utilized by 24
students. Therefore, in the case of a COD class with 92 students, one
32-node FPGA cloud chassis can meet our course requirement. One
more thing to be noticed is that several single-digit numbers were
recorded from 8/11 to 8/31 in the Summer semester. The reason is
that after the COD course, three outstanding students volunteered
to join our research group and were actively involved in one of
our research projects. Therefore, utilizing the FPGA cloud to teach
in our computer system course can successfully help some early
undergrads engage in computer system-related research.

Figure. 6 shows the average score of each required experimental
project in the class of 2018 Spring semester. With the help of our
easy-to-use design flow and user interface of the FPGA cloud, all
experimental projects are feasibly carried out. In the beginning
of this course, students started to be acquainted with this cloud
platform in Project #1 and #2 that target programming in assembly
as well as basic CPU design respectively and got good scores. In
Project #3, students’ average grade decreased as the integration of
their custom CPUs into real-world environment increases difficul-
ties in CPU design and HDL implementation compared with the
previous projects. This situation was even worse in Project #4 since
more sophisticated benchmarks were involved for performance
evaluation exposing more design defects in students’ CPU design
and implementations. Another reason causes the lowest average
grade in Project #4 lies in that existing debugging environment in
our FPGA cloud is not efficient enough for students to fix complex
bugs of their CPU cores in a four-week period. Moreover, grades of
optional projects are ignored as there were few students to engage
in such projects as important dates of these two projects were much
close to final exams of other courses.

We asked our students to complete two surveys respectively in
the middle and end of spring semester. The survey results from Ta-
ble. 2 show that the students’ satisfaction with the usage of remote
FPGA cloud platform (72/82=87.80%) was much higher than using
FPGA cards located in our computer lab (22/82=26.83%). As demon-
strated in Figure. 7, most of students preferred to use cloud rather
than local hardware kits due to the ease-of-use of our FPGA cloud

Paper Session: Systems SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

931

Remote monitoring of a hardware
chassis in our FPGA cloud off

campus, which is being accessed
by these students on campus

FPGA development kits on each
students’ table in this computer lab

(some kits are not even opened during
class, because students are using cloud!)

Students are using
their laptops or

desktops to conduct
course projects

Figure 7: An instructor and a teaching assistant are leading
the 92 students in our COD course to conduct experimental
projects in a computer lab.

Table 2: Survey results of satisfaction to the FPGA cloud in
our COD course. Note that 10 students who are minor in
computer science are not required to conduct lab projects.

of students Remote FPGA
Cloud Platform

Local FPGA
Development Kits

who were fond of using 72 22
who never used 2 19

who completed lab projects 82 82
in the class (lectures + labs) 92 92

Table 3: Student engagement in three academic fields repre-
sented by student counts, which shows that how the degree
of learners’ interest in these areas changes during the semes-
ter (“+”: favor, “++”: strong interest, “−”: dislike).

Computer
Science Major

Computer Architecture
and System

Research in
Computer Science

+→ ++ 21 24 16
++→ ++ 51 18 36
− → + 8 32 16
+→ − 10 10 11
− → − 2 8 13

platform. In terms of teaching effectiveness for both lecture and lab
part of our COD course, as shown in Table. 3 we can notice that
55.43% (51/92) of the students have been sustainably interested in
the major of computer science and 45.66% ((24+18)/92) for computer
architecture & system throughout this course. More importantly,
by leveraging the FPGA cloud platform in both lectures and labs,
our teaching approach gradually changes additional 34.78% (32/92)
students’ attitude towards computer system-related knowledge
from dislike to favor. Therefore, over 80% sophomore undergrads
would like to take more computer system-related courses in the
following semesters. Last but not least, in the third column of this
table, an increasing number (16+16) of these early undergraduates
are willing to conduct computer system-related research in the
future and 3 people joined our research lab during this summer. As

instructors, we should also pay attention to the 10 or 11 students
who became unfriendly to CS in the end of our course. One student
replied “Coding in HDL was terrible and hardware debugging was
also tedious”. Although this phenomenon exists for certain learners,
we need to mitigate this side effect in following terms in order
to improve the teaching effectiveness for all students. There are
several possible solutions, such as adding HDL introduction and
practice in the beginning or before the class, improving our FPGA
cloud with an advanced debugging framework, and so on.

5 LIMITATIONS AND FUTUREWORK
Debugging and Simulation. As discussed in Section 4, debug-

ging FPGA design in a remote manner currently exhibits inef-
ficiency, especially for hardware-software co-debugging to find
design defects of a custom CPU core. We plan to further boost
our simulation framework which would be nearly the same as the
hardware-software execution environment in our cloud FPGA node
to allow students conduct local co-debugging in their VMs.

Project Schedule. We would like to rearrange the time slot of
each project and coordinate with other courses to meet learning
diversity of various students, making each of them possible to
participate in all experimental projects.

Grading Method. Currently, the FPGA cloud platform can only
return a result log file to each student after he or she completes a
test case online. Therefore, the student could not see his or her score
for this project instantly. Moreover, this also increases instructors’
and teaching assistants’ workloads due to the tedious and manual
updates of project scores for each student. To tackle this problem,
we would like to integrate an advanced auto-grading feature in our
next-version FPGA cloud.

6 CONCLUSIONS
In this paper, we describe an in-house FPGA cloud platform for a
COD course which can be effectively used to introduce the essential
concept of hardware-software co-design for next-generation com-
puter system design to early undergrads. Our proposed FPGA cloud
provides an easy-to-use interface as well as a simple script-based
design flow to cultivate students’ computer system thinking abil-
ity with the minimum additional cost. We believe that our FPGA
cloud and relevant ecosystem would be also appropriate to service
students and instructors in many other computer system-related
courses such as operating system, computer architecture, embedded
system design, and so on.

7 ACKNOWLEDGMENTS
This work is supported by the National Key Technologies Research
andDevelopment Program of China under Grant No. 2017YFB1001602,
by the National Natural Science Foundation of China under Grant
No. 61702485, 61420106013, 61521092 and 61702480, and by the
Youth Innovation Promotion Association of CAS under Grant No.
2017143 and 2013073. We appreciate Prof. Xiufeng Sui for his teach-
ing in one of the two lecture classes of COD course at UCAS. We
thank Zihao Yu, Bowen Huang, Sha Liu, Huizhe Wang, Xu Zhang,
Lei Yu, Ran Zhao and Zhiwei Lai for their teaching and engineer-
ing assistance in our COD lab projects. We also thank anonymous
reviewers’ valuable feedbacks.

Paper Session: Systems SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

932

REFERENCES
[1] ACM. 2004. Computer Engineering Curricula 2004: Curriculum

Guidelines for Undergraduate Degree Programs in Computer En-
gineering. https://www.acm.org/binaries/content/assets/education/
curricula-recommendations/ce-final-report.pdf.

[2] ACM. 2013. Computer Science Curricula 2013: Curriculum Guidelines for Under-
graduate Degree Programs in Computer Science. https://www.acm.org/binaries/
content/assets/education/cs2013_web_final.pdf.

[3] ACM. 2016. Computer Engineering Curricula 2016: Curriculum Guidelines for
Undergraduate Degree Programs in Computer Engineering. https://www.acm.
org/binaries/content/assets/education/ce2016_web_final.pdf.

[4] Amazon Web Services. 2017. Amazon EC2 F1 Instances. https://aws.amazon.
com/ec2/instance-types/f1/.

[5] Arizona State University. 2018. Progressive Learning Platform. https://plp.asu.
edu/.

[6] D. Baldwin, P. Sanderson, R. McCartney, S. Ludi, N. T. Ramachandran, and C.
Taylor. 2011. SIGCSE Special Project Showcase. In Proc. 42nd SIGCSE Technical
Symposium on Computer Science Education. 5–6.

[7] Bochs. 2018. The Cross Platform IA-32 Emulator. https://bochs.sourceforge.net/.
[8] E. Brunvand. 2011. Games as Motivation in Computer Design Courses: I/O is the

Key. In Proc. 42nd SIGCSE Technical Symposium on Computer Science Education.
33–38.

[9] P. Bulic, V. Gustin, D. Sonc, and A. Strancar. 2013. An FPGA-based Integrated
Environment for Computer Architecture. Computer Applications in Engineering
Education 21, 1 (March 2013), 26–35.

[10] Z. Chai, Z. Wang, W. Yang, S. Ding, and Y. Zhang. 2014. OpenHEC: A Frame-
work for Application Programmers to Design FPGA-based Systems. In Proc. 1st
International Workshop on FPGAs for Software Programmers. 59–64.

[11] M. L. Corliss andM.Melara. 2011. VIREOS: An Integrated, Bottom-up, Educational
Operating Systems Project with FPGA Support. In Proc. 42nd SIGCSE Technical
Symposium on Computer Science Education. 39–44.

[12] Github. 2018. Github Classroom: Your Course Assignments on GitHub. https:
//classroom.github.com/.

[13] M. Gschwind. 1994. Reprogrammable Hardware for Educational Purpose. In Proc.
25th SIGCSE Technical Symposium on Computer Science Education. 183–187.

[14] J. Hennessy and D. Patterson. 2018. A New Golden Age for Computer Architec-
ture: Domain-Specific Hardware/Software Co-Design, Enanced Security, Open
Instruction Sets, and Agile Chip Development. In Turing Lecture of ACM/IEEE
International Symposium on Computer Architecture (ISCA).

[15] M. J. Jipping, S. Henry, K. Ludewig, and L. Tableman. 2006. How To Integrate
FPGAs Into a Computer Organization Course. In Proc. 37th SIGCSE Technical
Symposium on Computer Science Education. 234–238.

[16] D. B. Larkins, W. M. Jones, and H. E. Rickard. 2013. Using FPGAs as a Reconfig-
urable Teaching Tool Throughout CS Systems Curriculum. In Proc. 44th SIGCSE
Technical Symposium on Computer Science Education. 397–402.

[17] LC3Help.com. 2018. LC-3 Simulator. http://www.lc3help.com/.
[18] MIT Computation Structure Group. 2017. 6.175: Constructive Computer Archi-

tecture. https://csg.csail.mit.edu/6.175/.

[19] ICT of CAS. 2018. The Case for Labeled Von Noeumann Architecture (LvNA).
https://sdc.ict.ac.cn/isca2018-tutorial/.

[20] OpenStack. 2018. OpenStack. http://www.openstack.com/.
[21] R. Ord. 2018. CSE 30: Computer Organization and System Programming. https:

//cseweb.ucsd.edu/~ricko/CSE30/.
[22] D. Patti, A. Spadaccini, M. Palesi, F. Fazzino, and V. Catania. 2012. Supporting

Undergraduate Computer Architecture Students Using a Visual MIPS64 CPU
Simulator. IEEE Transactions on Education 55, 3 (Aug. 2012), 406–411.

[23] Penn Engineering. 2016. Computer Organization (Course: ESE534). https://www.
seas.upenn.edu/~ese534/.

[24] C. Quan, Y. Chen, S. Li, and Y. Zhao. 2016. Exploration of the Computer Hardware
Experiment Teaching Method based on the Cloud Platform. In Proc. IEEE Frontiers
in Education Conference (FIE). 1–5.

[25] D. Roggow, P. Uhing, P. Jones, and J. Zambreno. 2015. A Project-based Embedded
Systems Design Course Using a Reconfigurable SoC Platform. In Proc. IEEE
International Conference on Microelectronics Systems Education (MSE). 9–12.

[26] S. Sohoni, S. D. Craig, and S. Lu. 2017. Impact of Prior Exposure to the PLP
Instruction Set Architecture in a Computer Architecture Course. In Proc. 48th
SIGCSE Technical Symposium on Computer Science Education. 555–560.

[27] Stanford University. 2017. CS107E Computer Systems From the Ground Up.
https://web.stanford.edu/class/cs107e/.

[28] D. Tarnoff. 2015. Integrating the ARM-based Raspberry Pi into an Architectural
Course. Journal of Computing Sciences in Colleges 30, 5 (May 2015), 67–73.

[29] UC Berkeley EECS. 2018. CS61C: Machine Structures. https://inst.eecs.berkeley.
edu/~cs617.

[30] UIUC ECE. 2018. ECE 411: Computer Organization and Design. https://courses.
engr.illinois.edu/ece411/fa2018/.

[31] E. Upton, J. Duntemann, R. Roters, T. Mamtora, and B. Everard. 2016. Learning
Computer Architecture with Raspberry Pi (1st ed.). Wiley Publishing.

[32] K. Vollmar and P. Sanderson. 2006. MARS: An Education-OrientedMIPSAssembly
Language Simulator. In Proc. 37th SIGCSE Technical Symposium on Computer
Science Education. 239–243.

[33] K. L. Wang, C. S. Cole, T. Wang, and J. Harris. 2013. An Effective Project-based
Embedded System Design Teaching Method. In the 120th American Society for
Engineering Education (ASEE) Annual Conference and Exposition. 6849:1–6849:9.

[34] J. M. Wing. 2006. Computational Thinking. Communication of the ACM 49, 3
(March 2006), 33–35.

[35] Xilinx. 2018. Vivado Design Suite — HLx Editions. https://www.xilinx.com/
products/design-tools/vivado.html/.

[36] Xilinx. 2018. Zynq UltraScale+ MPSoC. https://www.xilinx.com/products/
silicon-devices/soc/zynq-ultrascale-mpsoc.html/.

[37] K. Zhang, M. Chen, and Y Bao. 2018. ZyForce: An FPGA-based Cloud Platform
for Experimental Curriculum of Computer System in University of Chinese
Academy of Sciences (Abstract Only). In Proc. 49th SIGCSE Technical Symposium
on Computer Science Education. 1091.

[38] Y. Zhang, Y. Chen, X. Ma, Y. Tang, Y. Niu, S. Li, and W. Liu. 2017. Remote
FPGA Lab Platform for Computer System Curriculum. In Proc. ACM Turing 50th
Celebration Conference - China (TUR-C). 3:1–3:6.

Paper Session: Systems SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

933

https://www.acm.org/binaries/content/assets/education/curricula-recommendations/ce-final-report.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/ce-final-report.pdf
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
https://www.acm.org/binaries/content/assets/education/ce2016_web_final.pdf
https://www.acm.org/binaries/content/assets/education/ce2016_web_final.pdf
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://plp.asu.edu/
https://plp.asu.edu/
https://bochs.sourceforge.net/
https://classroom.github.com/
https://classroom.github.com/
http://www.lc3help.com/
https://csg.csail.mit.edu/6.175/
https://sdc.ict.ac.cn/isca2018-tutorial/
http://www.openstack.com/
https://cseweb.ucsd.edu/~ricko/CSE30/
https://cseweb.ucsd.edu/~ricko/CSE30/
https://www.seas.upenn.edu/~ese534/
https://www.seas.upenn.edu/~ese534/
https://web.stanford.edu/class/cs107e/
https://inst.eecs.berkeley.edu/~cs617
https://inst.eecs.berkeley.edu/~cs617
https://courses.engr.illinois.edu/ece411/fa2018/
https://courses.engr.illinois.edu/ece411/fa2018/
https://www.xilinx.com/products/design-tools/vivado.html/
https://www.xilinx.com/products/design-tools/vivado.html/
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html/
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html/

	Abstract
	1 Introduction
	2 Background
	3 FPGA Cloud in COD Course
	3.1 Architectural and Technical Overview
	3.2 Usage in Lectures
	3.3 Usage in Labs

	4 Teaching Practice and Discussion
	5 Limitations and Future Work
	6 Conclusions
	7 Acknowledgments
	References

