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ABSTRACT
Ideal homomorphic encryption is theoretically achievable
but impractical in reality due to tremendous computing
overhead. Homomorphically encrypted databases, such as
CryptDB, leverage replication with partially homomorphic
encryption schemes to support different SQL queries over
encrypted data directly. These databases reach a balance be-
tween security and efficiency, but incur considerable storage
overhead, especially when making backups. Unfortunately,
general data compression techniques exhibit inefficiency
on encrypted data. We present CryptZip, a backup and re-
covery system that could highly reduce the backup storage
cost of encrypted databases. The key idea is to leverage the
metadata information of encryption schemes and selectively
backup one or several columns among semantically redun-
dant columns. The experimental results show that CryptZip
could reduce up to 90.5% backup storage cost on TPC-C
benchmark.
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1 INTRODUCTION
Applications on cloud today subject to much more threats
than ever. Users’ confidential data in back-end databases on
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cloud could be unauthorizedly accessed by hackers, adver-
saries and even malicious database administrators in var-
ious ways. To prevent data leaks, an intuitive alternative
is to encrypt sensitive data in source databases. However,
it will disable SQL queries executing on databases. Fortu-
nately, with the help of homomorphic encryption schemes,
CryptDB [24] was proposed to support SQL-queries on en-
crypted data directly and achieve both efficiency and con-
fidentiality. CryptDB attracted much attention of industry.
Many related systems have been implemented since then by
companies like Google, SAP, Microsoft, and some startups
[1]. In academia, many CryptDB-like systems have also been
proposed [10, 11, 17–19, 22, 29].

Fully homomorphic encryption allows arbitrary computa-
tion on encrypted data, but incurs tremendous computing
overhead. CryptDB instead leverages a collection of efficient
partially homomorphic encryption schemes, that each en-
cryption scheme can only support one kind of operations,
such as equality checks, order comparisons, aggregates and
etc.. To enable more operations, CryptDB stores multiple
ciphertexts of each data item encrypted by these schemes
in databases. Thus, each column is transformed into several
replicas columns of ciphertexts in CryptDB.
Such data layout is essentially complementary to par-

tially homomorphic encryption schemes to support arbitrary
queries over encrypted data, but incurs prohibitive storage
cost at the same time. As illustrated in Table 1, the storage
cost will expand to 21.3x when making backups for all the
encrypted TPC-C tables using MySQLDump. Today’s data-
base systems usually need to backup their data in DBMSes
periodically and recover from crash immediately. For im-
portant data, they even have to maintain several copies of
backup data in distributed data centers in case of unexpected
disasters, which will further amplify the storage overhead
incurred by CryptDB-like systems.

Unfortunately, it is quite inefficient to eliminate redundant
encrypted data using data compression techniques (only 15%
encrypted backup data of TPC-C are reduced by Gzip as illus-
trated in Table 1). For the sake of security, it is nearly unac-
ceptable to decrypt and compress the plaintexts in databases,
which will make the backup process vulnerable to attack.
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TPC-C Benchmark MySQLDump
(Plaintext)

MySQLDump
(Encrypted Data)

MySQLDump
(Compressing)

CryptZip
(Column Dedup)

CryptZip
(Dedup & Compressing)

Storage Size 79M 1680M 1432M 160M 79M
Table 1: MySQLDump produces 79MB backup files for plaintext data and 1680MB for encrypted data, introducing
21.3x storage cost. Using Gzip to compress the encrypted data only reduces the storage cost to 1432MB. CryptZip
is able to extract 160MB data for backup, which can be further compressed to 79MB.

Thus the ideal alternative is to apply the compression tech-
niques on the encrypted data directly. However, the efficiency
of compression techniques heavily rely on data similarity,
whereas cryptography aims to make ciphertexts indistin-
guishable from random data. Thus, the efficiency of com-
pressing ciphertexts decreases heavily.
Therefore in this paper we ask the following question:

can we significantly reduce the storage overhead of encrypted
backup data? Meanwhile, since we still have to recover all
the duplicated data from crash, the duration of recovery is
also important to DBMSes. Intuitively, more redundant data
are reduced, longer duration of recovery is needed. Thus, the
backup strategy need to be carefully designed to trade off
between storage cost and recovery time.
We present CryptZip, an efficient backup and recovery

system for homomorphically encrypted databases that lever-
ages metadata information to significantly reduce the backup
storage of encrypted data. We observe that CryptDB-like
systems usually maintain metadata tables to record the en-
cryption schemes of each duplicated column. The metadata
information will indicate which encrypted columns essen-
tially store the same data items. Intuitively, with metadata
information, we can selectively backup one or a few columns
among these semantically redundant columns without de-
cryption and highly reduce the storage overhead.
However, since CryptDB-like systems incorporate a col-

lection of partially homomorphic encryption schemes (DET,
OPE, HOM and etc. in §2.2), the key challenge becomes how
to choose the right encrypted columns encrypted by dif-
ferent schemes for backup and recovery. There are at least
three aspects that should be considered: 1) the original table
could be recovered from the selected encrypted columns cor-
rectly and completely. 2) The storage overhead incurred by
these encrypted columns should be relatively small. 3) The
time consumed by recovering from these encrypted columns
should be relatively short.
Considering the above requirements, we first study the

characteristics of state-of-the-art partially homomorphic en-
cryption schemes on computation and storage overhead as
well as encrypted data integrity. Then we design a min-
space model to help operators explore the backup strategy
with minimum storage cost under certain recovery time
requirement. We further propose three backup strategies
(space-optimal strategy, time-optimal strategy and balanced
strategy) with state-of-the-art encryption schemes. To eval-
uate the efficiency of CryptZip, we conduct experiments

towards two micro-benchmarks and TPC-C benchmark. The
experimental results show that the space-optimal strategy
could reduce 70%~95% storage cost on micro-benchmarks
and 83%~90.5% on TPC-C benchmark. The balanced strategy
makes a tradeoff between storage cost and recovery time
that reduces 18%~67% storage cost on micro-benchmarks
with extra recovery time of less than 3 minutes, reduces 55%
storage cost on TPC-C benchmark with extra recovery time
of only 5 minutes .

2 BACKGROUND
2.1 Computing On Encrypted data
Homomorphic encryption is a technique allowing comput-
ing on encrypted data. This notion was proposed by Ron
Rivest [26] in 1978. The first fully homomorphic encryp-
tion(FHE) construction was proposed by Gentry [12]. Fully
homomorphic encryption allows arbitrary computation over
encrypted data but the efficiency is low. The evaluation of
AES using FHE was reported to be more than six orders of
magnitude than that in plaintext [23]. Therefore, FHE is far
from practical.

In contrast, partially homomorphic encryption allows lim-
ited number of operations on ciphertexts with higher effi-
ciency. RSA [27] and El Gamal [9] support multiplication on
ciphertexts. Pailliar [21] supports addition on ciphertexts.
Order preserving encryption [4, 6, 7] preserves the order of
plaintexts, thus enabling comparing order directly on cipher-
texts. Searching on encrypted strings is also supported by
several encryption schemes [8, 15, 28]. Those algorithms are
able to be adopted in production due to their high efficiency.

2.2 CryptDB
CryptDB is the first practical database system that uses a
collection of partially homomorphic encryption schemes to
support executing SQL queries directly on encrypted data.
CryptDB leverages multi-onions encryption schemes to en-
crypt relational tables and a trusted proxy for transparent
encryption and decryption.

Architecture. Figure 1(➊) shows the architecture of Cryp-
tDB. CryptDB puts a proxy between the web server and the
DBMS. The proxy server maintains the metadata and en-
cryption keys of the DBMS. Metadata records the encryption
details of tables in the DBMS. The web server interacts with
the proxy as if querying normal databases and the database
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Figure 1: ➊The architecture of CryptDB-like systemwith three layers: a web server, a database proxy and a DBMS.
They put a proxy server between the web server and the DBMS server which intercepts all SQL queries and rewrite
them to execute on encrypted data. The results are sent back to the proxy server first for decryption, and then
plaintexts will be sent to web server. ➋ The backup and recovery of CryptZip that leverages a backup client to get
metadata from proxy servers, parses data, backup and recovery.

executes encrypted queries on encrypted data directly. Both
the web server and the database do not need to be changed.

Multi-Onions Encryption. Each partially homomorphic
encryption scheme supports one kind of operations. For ex-
ample, Pailliar supports addition but disallows order compar-
ison. Similarly, order preserving encryption schemes do not
support addition instead. If both addition and order compar-
ison are needed for the data, neither scheme alone is able to
provide both. CryptDB addresses this problem by adopting
data replication and multi-onions encryption. The original
plaintext is replicated several times and each replica is en-
crypted using different onions. Onion DET [25] supports
equality comparison; Onion OPE [6] allows order compari-
son; SRH [28] allows searching on ciphertexts; HOM [21]
and ASHE [22] allows addition on ciphertexts. When a spe-
cific operation on ciphertexts is needed, the corresponding
encrypted replica supporting that operation is queried. As
shown in Figure 1(➋), each column in the plaintext table
corresponds to three different encrypted replicas of onions
and an IV column.

Each onion consists of one or more layers to improve secu-
rity. For example, onion OPE uses order preserving encryp-
tion scheme which is considered insecure. Adding another
random encryption layer on this onion improves security
level [24]. To enable random encryption, the extra column
IV containing random numbers are added. The random layer
does not support order comparing any more, therefore, this
layer is decrypted when order comparing is needed for the
corresponding column.

2.3 Backup
Typical database backup falls into two categories based on
the format of the backup files [2]: logical backup and physical
backup.

Physical backup consists of raw copies of directories
and files that store the database contents. In fact, simple

commands like cp can be used as physical backup method.
Popular physical backup tools includes ibbackup and Xtra-
Backup [3]. MySQL stores data and metadata in a set of files
in a user configured directory.

Logical backup saves information in the form of SQL
queries. For Logical backup, it’s easy to control the backup
granularity, and it’s highly portable since the backup is in
text files containing data or SQL queries. MySQLDump and
MySQLdumper are examples of Logical backup tools. We can
also use SELECT .. INTO OUTFILE to create delimited-text
files for logical backup. The basic process of logical backup is
first to use select SQL queries to pull data from the MySQL-
Server, and then save those data into text files.
In this paper, we choose logical backup due to following

considerations: 1) The portability of logical backup can make
our method applied to a wide range of systems supporting
SQL. 2) Logical backup enables us to find duplicated columns
directly using SQL queries and further reduces storage over-
head.

3 CRYPTZIP DESIGN
3.1 Overview
In CryptDB, each column is replicated several times and each
replica of the original column is encrypted its correspond-
ing onion. Therefore, the intuitive idea is to store only one
encrypted replica (onion) and remove the others. To achieve
this goal, we propose CryptZip’s backup and recovery mech-
anism, as depicted in Figure 1(➋).
The backup process consists of two steps: parsing meta-

data and storing encrypted columns. Parsing metadata en-
ables CryptZip to find the mapping from each plaintext col-
umn to its encrypted replicas. For example, the table in Fig-
ure 1(➋) consists of two columns, NAME and ID. Each col-
umn is replicated and encrypted using multiple onions, each



APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea Yiwen Shao, Sa Wang, Yungang Bao

0 10 20 30
Time(ms)

3

4

5

6

7

S
pa

ce
(K

B
)

[D,O, S]

[D,O]

[D]

[D,S]

(a) Strings

0 5 10 15 20
Time(ms)

0.5

1.0

1.5

2

2.5

S
pa

ce
(K

B
)

[D]/[O]/[A]

[A,D]

[D,O]/[A,O]

[A,D,O]

(b) Integers

Figure 2: The time and space overhead of different
backup strategies: (a) strings with (D,O, S) and (b) in-
tegers with (D,O,A).

of which owns an encrypted column name. The mapping
from each plaintext column’s name to names of its encrypted
replicas is stored as metadata in the proxy. By querying the
proxy, the mapping is revealed. After that, CryptZip is able to
select one encrypted replica for data backup. As Figure 1(➋)
depicts, onion DET is selected for column NAME, and onion
HOM for ID. Once the selection is made, each encrypted col-
umn is fetched from the database and stored in its own file.
In addition, a file called CryptMeta is also created to record
the names of onions not selected in backup. This information
is used in restoring process.
The data restoring process is the reverse of backup pro-

cess. For each plaintext column, CryptMeta is used to find
which encrypted replica of onions are selected for backup and
which onions are not. Then the onion selected for backup,
which is called the recovery onion, is decrypted and the
onions not selected are restored by applying onion encryp-
tion. As in the example in Figure 1(➋), to restore the onions
for the column NAME, onion DET is decrypted and the other
onions are restored by onion encryption. For column ID, the
process is similar.

3.2 Min-Space Analysis and Strategies
Intuitively, storing only one encrypted replica for each plain-
text column can definitely reduce the storage overhead as
much as possible. However, this strategy means all the other
replicas needs to be restored by encryption, which incurs
great time overhead. In addition, as is shown in Table 2, some
onions like OPE for strings are not able to be decrypted,
which means only using those onions for backup will pre-
vent us from restoring data. As a result, it is a great challenge
to choose a subset of more than one replicas may be selected
for each plaintext column. For each plaintext column, the
challenge of how to select a subset of its encrypted replicas
needs to be addressed. We call the selection of this subset
backup strategy and maintain that given a specified period of

Table 2: Properities of onion encryption schemes.
Onion DET and OPE for strings have properities dif-
ferent from that of integers. Onions that are not able
to be decrypted can not be used as recovery onion.

Encryption
Scheme

Data
Type

Recovery
Onion

Encrypt
Time(us)

Decrypt
Time(us)

Data
Size
(Byte)

Encrypt
Rate
(Byte/us)

DET

Integer

YES 1.9 1.33 8 4.21
OPE YES 172.5 167.6 8 0.046
HOM YES 5690 493 256 0.045
ASHE YES 0.35 0.36 8 22.8
DET

String
YES 0-595.5 0-611.3 0-65535 0.009

OPE NO 200.6 N/A 8 0.39
SEARCH NO 10.1 N/A 16 1.58

IV Integer
/String NO 0.7 N/A 8 11.4

time, the strategies need to produce as little space overhead
as possible. This is called Min-Space target in our analysis.

Overhead and Notations. In the analysis, we use the
first characters D,O,A,H , S to represent onion DET, OPE,
ASHE, HOM, Search respectively. In CryptDB, each column
can be encrypted using a set of onions, which is denoted as
OA. The onions selected for backup is OS . OA is presented
using parentheses, and brackets for OS . For example, if an
integer column is encrypted using onion DET, OPE, and
HOM, and onion DET is selected for backup, then OA and
OS are (D,O,H ) and [D,O] respectively. We use TE , TD , and
s to denote the average encryption time, average decryption
time and average size of an onion. Besides, we use value d
to indicate whether an onion is able to be decrypted. If so,
the value of d is 1, otherwise 0.
Once OS is determined, the space overhead SF and time

overhead Ext(OS ) for a column is obtained by Formula 1
and Formula 2 respectively. Meanwhile, OS needs to satisfy
the constraint in Formula 3 since at least one onion in the
backup needs to be decrypted.

SF =
∑
O ∈OS

s (1)

Ext(OS ) = min
O ∈OS

TD +
∑

O ∈(OA−OS )
TE (2)

(
∑
O ∈OS

d) ≥ 1 (3)

Min-Space Analysis. In CryptDB, the default OA can be
(D,O,H ) or (D,O,A) for integers and (D,O, S) for strings.
The random encryption layer discussed earlier is often peeled
off to support operations, therefore, we do not backup the
random number column IV, which is used to support random
encryption.
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Table 3: Backup Strategies

Backup Strategies String Integer

(D,O, S) (D,O,H ) (D,O,A)
Space-Optimal Strategy [D] [D] [D]
Balanced Strategy [D,O] [D,H ] [D,O]
Time-Optimal Strategy [D,O, S] [D,H ,O] [D,O,A]

For strings, only onion DET is able to be decrypted. There-
fore, in order to satisfy the constraint in Formula 3, onion
DET must be preserved in a backup, leaving us four backup
strategies(OS ): [D], [D,O], [D, S], and [D,O, S].
Figure 2a shows time and space overhead of different

strategies for backup. The overhead is obtained using For-
mula 1 and Formula 2. In Figure 2a, we assume that each
column of onion contains one million lines of data, and it
is allowed to backup a portion of lines of a column of data.
The time for the point [D,O, S] is 0 since all the onions are
preserved, which means no extra time is needed for recovery.
The point [D] requires maximum time for recovery among
the four strategies since two columns of onions need to be
restored. From point [D,O, S], the full backup, if we add ∆t ,
then the user is able to delete several lines of either onion
OPE or onion Search. If onion Search is first deleted, then
onion OPE, we can obtain the red line in Figure 2a. Otherwise,
we can obtain the blue line in Figure 2a.

If we look up from the x axis, the first point we meet is the
min-space under the specified time. Therefore, all points on
the red line in Figure 2a satisfy the min-space requirement.
The three strategies on the red line are the three levels of
strategies proposed for this data type: space-optimal strat-
egy [D], balanced strategy [D,O] and time-optimal strategy
[D,O, S].
For integers, the default OA can be either (D,O,A) and

(D,O,H ). Different from strings, all the onions for integers
are able to be decrypted. Therefore, there are 7 strategies
exist. For example, if OA is (D,O,A), seven strategies exists,
namely [D], [O], [A], [D,O], [D,A], [O,A], and [D,O,A]. Fig-
ure 2b shows the time and space overhead of the strategies
when OA is (D,O,A). The three levels of strategies can be
proposed using similar methods.
Therefore, backup strategies for two data types under

different OA are summarized in Table 3.

4 EVALUATION
This section evaluates the storage cost and recovery time of
three strategies of CryptZip proposed in §3.2. Meanwhile, we
further analyze the breakdown of storage cost and recovery
time of each encryption scheme.

Environment Setup. Our evaluations are conducted on
two machines both with 8 Intel(R) Xeon(R) CPU E5-2630 v4
@ 2.20GHz cores, 64GBmemory and 1GB/s network running
Ubuntu 16.04. We use MySQL 5.7 and MySQL Proxy 0.8.5 for
CryptDB and Gzip 1.6 for data compressing.

Workloads.Our evaluations mainly use two benchmarks:
1) micro-benchmarks containing one integer table that con-
tains only one 4 bytes integer column with 1,000,000 random
integers and two string tables that each contains only one
string column (16 bytes and 128 bytes) with 1,000,000 random
strings. 2) TPC-C benchmark.

4.1 Micro-Benchmarks
Integers.We evaluate integers encrypted by (D, O, H) and
(D, O, A). As illustrated in Table 4, for strategies with HOM,
the space-optimal strategy reduces the storage overhead
to 5%, but it introduces extra recovery time of more than
5,800 seconds1. When the time-optimal strategy reduces the
recovery time to only 36%, the space overhead increases to
86%. Either time or space optimal strategy will cause the cost
of the other side to soar, which makes it difficult to make
tradeoffs between time and space including the balanced
strategy. For strategies with ASHE, the balanced strategy can
seek one good combination that storage cost and recovery
time are both reduced (storage cost was reduced by 50% and
time overhead was reduced by 20%).

We further break down the storage and time overhead as
in Figure 3 (Integer), find out that HOM encryption scheme
not only has a large storage overhead, but also cause long
encryption and decryption time. When HOM is chose as a
backup column, since it does not need to be encrypted at the
time of recovery, the time cost is drastically reduced. But the
storage overhead is huge. When HOM is removed from the
backup solution, the storage overhead is drastically reduced,
but the time for encryption recovery is increased. Thus, it is
quite difficult to explore a balanced strategy to both reduce
the storage cost and recovery time in the strategies with
HOM. However, ASHE scheme has relatively small storage
overhead and encryption time overhead. Therefore, we rec-
ommend ASHE instead of HOM to support integer addition to
save more storage and recovery time.

Strings. We evaluate strings encrypted by (D, O, S). As
discussed in §3.2, the size of onion OPE for strings is 8 Bytes
while the size of onion DET and SEARCH depends on the
number of key words. Therefore, we choose 16 bytes and
128 bytes to evaluate how the size of onions change with
string length, and how this change affects the overhead of
the three strategies.

1The + symbol in each table means the number plus the recovery time of
MysqlDump is the whole recovery time of that strategy.
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Table 4: Storage Cost and Recovery Time of Strategies for Integers

Backup Strategy Strategies with HOM Strategies with ASHE

Storage Cost Storage Ratio Recovery Time Time Ratio Storage Cost Storage Ratio Recovery Time Time Ratio

MySQLDump 345MB - 90s - 65.9MB - 19.9s -
Space-Optimal Strategy 20MB 5% +5866s 65x 19.5MB 30% +132.8s 6.81x
Time-Optimal Strategy 297MB 86% +16s 0.36x 44.7MB 68% +12s 0.89x
Balanced Strategy 282MB 82% +143s 2.45x 34.1MB 52% +14.2s 0.8x

Table 5: Storage Cost and Recovery Time of Strategies for Strings

Backup Strategy Strategies for String-16 Strategies for String-128

Storage Cost Storage Ratio Recovery Time Time Ratio Storage Cost Storage Ratio Recovery Time Time Ratio

MySQLDump 59MB - 17.9s - 495MB - 124s -
Space-Optimal Strategy 16.2MB 27% +94.3s 5.09x 143MB 29% +316s 3.8x
Time-Optimal Strategy 42MB 71% +6.4s 0.42x 415MB 84% +17s 0.25x
Balanced Strategy 25.8MB 44% +19.7s 1.17x 163MB 33% +122s 1.48x
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Figure 3: The four characteristics of each column encrypted using its onion: time for encryption, time for decryp-
tion, data size and compressed data size

Table 6: Storage Cost and Recovery Time of TPC-C benchmark

Backup Strategy Strategies with HOM Strategies with ASHE

Storage Cost Storage Ratio Recovery Time Time Ratio Storage Cost Storage Ratio Recovery Time Time Ratio

MySQLDump 1680MB - 244s - 572MB - 91s -
Space-Optimal Strategy 160MB 9.5% +26215s 107.4x 160MB 27% +3556s 39.8x
Time-Optimal Strategy 1368MB 81.4% +246s 1.008x 533MB 93% +180s 1.97x
Balanced Strategy 1205MB 71.7% +1031s 4.23x 259MB 45% +327s 3.59x

As illustrated in Figure 3 (String-16 and String-128), the
storage cost and encryption and decryption time of DET
and SEARCH increases as the string length increases, except
for OPE. The storage cost and recovery time of OPE stay
the same whenever the string length grows. Therefore, we

recommend OPE should be preserved for long strings. Also, as
strings grow longer, the relative storage cost becomes lower.

Compression Ratio. We also illustrate the compression
ratio of each encryption scheme in Figure 3. The light blue
bar of each scheme is the original data size, and the dark blue
is the data size after compressed by Gzip. For integers, except
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for HOM, the schemes all reach nearly 50% compression ratio.
But for strings, except for OPE, the other two schemes both
present small compression ratio.

4.2 TPC-C Benchmark
We evaluate the three backup strategies on encrypted TPC-C
data. The backup of plaintext TPC-C data is 79MB. As illus-
trated in Table 1, for encryption schemes with HOM, the size
of backup expands to 1680MB. Even with compression, the
storage size is still 1432MB. In contrast, with space-optimal
strategy, the storage size is reduced to 160MB. However, as
discussed earlier, the corresponding time overhead drasti-
cally increase due to the encryption overhead of HOM. For
TPC-C data encrypted with ASHE, the balanced strategy
presents a better tradeoff between storage cost and recovery
time, which reduces nearly 60% storage cost and introduces
only 5 minutes recovery time.

5 RELATEDWORK
Data compression. Data compression is an old technique
to reduce storage size. It treats the data as byte stream and
uses encoding algorithms to represent the data to be com-
pressed [13]. Huffman Algorithm is one example. Others
algorithms are also proposed in different areas, like Run-
Length encoding and Lempel-Ziv encoding. The Gzip tool
used in the experiments implements a variant of LZ77.

Data deduplication. Data deduplication [20] is another
technique to reduce storage size in cloud environment. Those
methods find either inter file or intra file redundancy and
store only one copy of duplicated data. Both data compres-
sion and data deduplication are general purpose methods
that are unaware of the underlying characteristics of data.
In CryptDB, each replica of a column is encrypted using
different algorithms and different encryption keys, which
makes finding replicas difficult. Different from those meth-
ods, CryptZip leverages metadata to find replicas in higher
level. Besides, each replica has different characteristics, which
makes backup strategies necessary.

Encrypted deduplication. Message-locked encryption
[5] and similar work are methods to solve the problem of
secure deduplication. Those schemes are not the same as the
partially homomorphic encryption schemes used in CryptDB,
and therefore do not solve the problem in CryptDB.

6 CONCLUSION AND FUTUREWORK
CryptDB leverages data replication and onion encryption to
support SQL queries on encrypted data. The replication and
cryptographic expansion results in great space overhead. In
this paper, we proposed CryptZip, which parses metadata
of CryptDB to discover replicas encrypted using different
onions. Using this extra information, we used min-space

analysis to provide three levels of backup strategies. The
experimental results show that CryptZip could reduce up to
90.5% backup storage cost on TPC-C benchmark.

In our future work, we plan to redesign the recovery pro-
cess, which needs decrypt the backup data and encrypt the
plaintext to restore the onions. This process will introduce
extra security risks. We consider to leverage hardware en-
cryption techniques like AMD Memory Encryption [16] and
Intel SGX [14] to address this problem.
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