
Resource Efficient Observability at Scale

Real-world Deployments in Data Center and Smartphones

Ding Yuan

YScope

0



The Cost of Debugging

30%

20%

50%

Programming Time

Coding Design Debugging [Britton et al. 2013]



Debugging Production Failures Require Runtime Data

•No Data, Can’t Trouble-shoot
• Debugging in the Dark

•Can’t use debuggers!

2



3

2020-01-02T03:04:05.006 INFO Task task_12 assigned to container: 
[NodeAddress:172.128.0.41, ContainerID:container_15], operation took 0.335 seconds
2020-01-02T03:04:05.006 INFO Task task_12 assigned to container: 
[NodeAddress:172.128.0.41, ContainerID:container_15], operation took 0.335 seconds
2020-01-02T03:04:05.006 INFO Task task_12 assigned to container: 
[NodeAddress:172.128.0.41, ContainerID:container_15], operation took 0.335 seconds
2020-01-02T03:04:05.006 INFO Task task_12 assigned to container: 
[NodeAddress:172.128.0.41, ContainerID:container_15], operation took 0.335 seconds

Example log message Timestamp Variables Static text

Services Logs & Traces

log.info(”Task” + task_id + “ assigned to container…”);

Who What Where

Logs Programmers Domain-specific Source

Traces Tools Generic External

Engineers rely on Logs and Traces



Challenge: Resource Efficiency

• Requires < 3% of overhead
• Both CPU & memory

• Internet companies generate Petabytes of logs
• Annual storage cost: $50 million

4



This Talk: Resource Efficient Observability

• CLP: Efficient and Scalable Search on Compressed Logs [OSDI’21]
• Deployed on Uber’s entire Big Data Platform

• Hubble: Performance Debugging with In-Production, Just-in-Time Method 
Tracing on Android [OSDI’22]

• Shipped on all Huawei’s Android devices in China

5



: Efficient and Scalable
Search on Compressed Text Logs

with Kirk Rodrigues and Yu Luo

CLP

https://github.com/y-scope/clp



The Log Management Pipeline

7

Logs

• Provide crucial runtime information
• Widely used for many purposes

Search Tools

Ingest
Enterprise ripgrep

Debugging

Security 
Forensics

Trend 
Analysis

Capacity 
Planning

Alerting
Machine 
Learning



Design Space of Search Tools

8

Enterprise
Index-based

IndexLogs

Brute-force CLP

Compression
Ratio

1x
2x

72x

68x1x 6x Search Speed

ripgrep



9

2020-01-02T03:04:05.006 INFO Task task_12 assigned to container: 
[NodeAddress:172.128.0.41, ContainerID:container_15], operation took 0.335 seconds

Explore the Repetitiveness of Logs

2020-01-02T03:04:05.006 INFO Task task_12 assigned to container: 
[NodeAddress:172.128.0.41, ContainerID:container_15], operation took 0.335 seconds



10



11

On-disk Format

Segment

Archive

Further compress with zstandard



Log Type
Dictionary
Variable

Dictionary
Encoded
Message

Uncompressed
Message

12

Search



13

Search

Task * assigned to container*:172.128*Task * assigned to container*:172.128*

Dictionary variable?

Log type?

Task * assigned to container*:172.128*

Dictionary variable?

Encoded variable?

Log type?

2020-01-02T03:04:05.006 INFO Task task_12 assigned to container: 
[NodeAddress:172.128.0.41, ContainerID:container_15], operation took 0.335 seconds



14

Search
Task * assigned to container*:172.128*

# Log type Variables

1 Task * assigned to container*:172.128* -

2 Task * assigned to container*: 172.128* (IP address)

3 Task * assigned to container*: 172.128* (float)

4 Task * assigned to :172.128* container*

5 Task * assigned to : container*, 172.128* (IP address)

6 Task * assigned to : container*, 172.128* (floating point)



15

Search
Task * assigned to container*:172.128*

# Log type Variables

6 Task * assigned to : container*, 172.128* (floating point)

Logtype
Dictionary

Segment 2

Variable 
Dictionary

Segments: {0,2, ..} Segments: {1,2, ..}
U

Scan segments



Result

16

CLP [2021]

1x
2x

72x

68x1x 6x Search Speed

ripgrep

43x

8x



17

Optimization: Group-by Log Type (GLT)
Timestamp Log Type Variables

0xE3 4 0 1 2 0x000053DA

… 6 …

… 6 …

… 4 …

… 6 …

Timestamp Task IP Container Latency

0xE3 0 1 2 0x000053DA

.. .. .. .. ..

Log Type 4: Encoded Message Table

Log Type 6: Encoded Message Table

Timestamp var1 var2 var3

.. .. .. ..

.. .. .. ..

.. .. .. ..

Query: 
assigned to container: [*, ContainerID:container_15]

Log type: 4

Container: 2



Result

18

CLP [2021]

1x
2x

72x

68x1x 6x Search Speed

ripgrep

43x

8x

CLP-GLT 
[2022]



Deployment at Uber

19

BIG DATA
Analytics Platform

250,000 analytics jobs per day

100,000s of workers per job 100 PB data analyzed per job

200 TB logs per day



Deployment Experience: Uber

20



Deployment Experience: Uber

21



The Problems at Uber

22

Need 10x longer retention SSDs Burning Out

Various use cases

4 year life-span used up in < 1 year

IT disabled INFO logs

Log write

App Lifespan

Swap 
out

Swap
in



Logging Library

Integrating CLP at Uber

23

WORKER

Before

Logging Library

WORKER

CLP

After



Integrating CLP at Uber: Challenges

24

Single log file per worker

Workers are memory constrained

Designed to compress
many files in batches

Uses hundreds of MB of memory
to store dictionaries and columns

Uber Worker CLP



Integrating CLP at Uber: 2 Phases

25

task_12

PHASE 1: Parse and stream out

2022-04-25T00:00:01.000 INFO Task task_12 assigned to container: 
[NodeAddress:172.128.0.41, ContainerID:container_15], operation took 0.335 seconds

172.128.0.41 container_15

0x0000000000029E63

H H H

H INFO Task …H 0x1H ZSTD

PHASE 2: Aggregate into archives



Integrating CLP at Uber: Results

26

PHASE 1 PHASE 2

169x
compression ratio

2x
more



Hubble: Performance Debugging with 

In-Production, Just-In-Time Method Tracing on Android

Yu Luo, Kirk Rodrigues, 
Cuiqin Li, Fen Zhang, Lijin Jiang, Bing Xia, 

David Lion, Ding Yuan

27
Published in OSDI’22



What is an Intermittent Performance Bug?

Example: While typing

1. Keyboard becomes unresponsive

2. A second later…

3. Problem resolves itself, but

typed an extra “S” … 

28



Why Focus on Intermittent Performance Bugs?

Elusive: Hardest to catch during testing

• Requires rare combination of events or environment factors

Painful to Debug: Lack of diagnostic data from production

• Sparse trace from important runtime methods only

• Low quality application log messages

• Periodic system metrics

29



Application Method

System Method

Hubble: Continuous Method Tracing In-Production

30



Application Method

System Method

Hubble: Continuous Method Tracing In-Production

In-Memory Ring Buffer

Overwrite

31



Minimal Privacy Concerns

• Does not collect personally identifiable information

• Trace data only contain method names and timestamp

• WER, MacOS or Mozilla crash report collect minidumps

32



Case Study – One Second Freeze after Video Call
Without Hubble

With Hubble



Real World Requirements

Performance & Memory overhead:

• 2 - 3% worst case

Android specific requirements:
• No source code dependency

• Easy to maintain and rebase

• Optimize for big.LITTLE CPU cores

34



Opportunity: Leverage JIT in Runtime Environment

Byte Code

AOT

JIT

Hubble

Hubble

Interpreter

Compiler

Ensure correctness
No data dependency with method

• compiler free to optimize out trace point

Inlined Trace Point
Avoid saving register to stack (slow)

35



Hand-Optimized Assembly

Efficient Access to Trace Data
• Method pointer at a specific CPU register upon method entry

• Direct access to clock cycle counter (RDTSC in x86) register value

Specific Optimizations for big.LITTLE CPU’s LITTLE Cores
• Worked SoC chip designer to perform uArch specific optimizations

• Data prefetching, manual instruction re-ordering, avoid pipeline stalls

36



Deployment Experiences

Status: 
• Dev branch – 2019      Production branch - 2020

Size: 
• Tens of thousands of user in beta groups

• Thousands of devices in automated regression test

• Can be enabled on other users with consent

Use Case:
• Triage and diagnose intermittent performance bugs in production

• Equally helpful for bugs discovered via automated testing 

37



Concluding Remarks

• Resource Efficiency: Key challenge on Log and Trace management
• CLP: Log compression & search

• Hubble: Method tracing on Android

• Exciting opportunities for resource-efficient observability support 

38

Byte Code

AOT

JIT

Hubble

Hubble

Interpreter

Compiler


