
Software-Defined Cloud Systems
Xin Jin

2022.10.14

HotDC 2022

Cloud Systems: Critical Infrastructure of
Modern Society

1

…Apps

Cloud Systems

End of Moore’s Law

2

Exponentially Growing Demand
(more data, apps, services…)

Rise of Domain-Specific Processors

3

GPU

Graphics

TPU

Machine Learning

PISA

Packet Processing

Building Software-Defined Cloud Operating
Systems in the Post Moore's Law Era

4

…Apps

Domain-Specific Hardware

Cloud
Data

Centers

Software-Defined Cloud Systems

5

Compute Network Storage

Distributed

Domain-Specific Hardware

GPU TPU Tofino Trident DRAM NVM

Traditional OS is CPU-centric for a single node à
New challenges are new research opportunities

Our Recent Work on
Software-Defined Cloud Systems

6

Meissa: Scalable Network Testing for Programmable Data Planes

Data Plane: Reliability

Control Plane: Multi-Resource Scheduling
Multi-Resource Interleaving for Deep Learning Training

Meissa: Scalable Network Testing for
Programmable Data Planes

Naiqian Zheng, Mengqi Liu, Ennan Zhai, Hongqiang Harry Liu,
Yifan Li, Kaicheng Yang, Xuanzhe Liu, Xin Jin

✓

✓

✓

Versatility

High performance

Programmability

Large control flow

Non-code bugs

Incomprehensive test

✗ Bugs are common with
programmable data planes!

Programmable data planes are buggy

Bug taxonomy

Code logic Table rule Toolchain Switch

Code bugs Non-code bugs

Tools to identify bugs

Code logic Table rule Toolchain Switch

Code bugs Non-code bugs

Verification: Aquila, p4v

Testing: Gauntlet, p4pktgen

Challenge

Verification: Aquila, p4v Testing: Gauntlet, p4pktgen

Toolchain Switch

Path Explosion

LOC: O(104)
of path: O(10197)

Non-code bugs

Challenge

Verification: Aquila, p4v Testing: Gauntlet, p4pktgen

Toolchain Switch

Path Explosion

LOC: O(104)
of path: O(10197)

Non-code bugs

Identify both code bugs and non-code bugs

Scale to large large programs

Scalable testing with 100% path coverage

Bug
checking

Scalability

Aquila [SIGCOMM’ 21]

P4pktgen [SOSR’ 18]

Gauntlet [OSDI’ 20]

How to detect potential bugs?

Meissa [SIGCOMM’ 22]

Meissa overview

Meissa
Frontend

Control Flow
Graph

Generation

Code
Summary
Technique

Test
Generation

Testbed
Driver

Meissa

Decompose
control flow
graph into
individual
pipelines

Simplify
code logics

by removing
unsatisfiable

paths

Summarize
control flow
graph with
simplified

logics

Gather
public pre-
condition

Iteration over pipelines

Core: Code Summary Technique

Control flow graph

• The control flow graph(CFG) depicts logics of a P4 program
• Code
• Table entry

• The control flow graph consists of two types of nodes
• Predicate node: judgement, branching
• Action node: variable assignment

Test generation with symbolic
execution

Test generation: input packets which traverse paths in the CFG

Goal: get input packets which traverse all paths in the CFG

Goal: 100% path coverage

Input
packets

P4
Program

Output
packets

Cover paths Check

Depth-first search traverses the control flow graph.

Symbolic execution checks the paths’ satisfiability.

CFG Paths Valid
paths

DFS
Symbolic
execution Test

packets

Symbolic
execution

Test generation with symbolic execution

A lot of redundancy

10000 paths only 100 valid paths!

Code summary technique

• Code summary eliminates redundancy in advance to speed up DFS.

• Code summary summarizes each pipelines with a succinct representation
respectively.

• Code summary gathers succinct summaries of each pipelines into a new
simplified CFG.

Summary of an individual pipeline

Techniques:

1. Intra-pipeline redundancy elimination

2. Inter-pipeline public pre-condition filtering

Intra-pipeline redundancy elimination

Goals:

1. Remove invalid paths

2. Shorten valid paths Action 1

Action
summary

Pred.
1

Predicate
summary

Pred.
2

Action 2

Action 3

Algorithms:

1. Depth-first search

2. Collect paths’ contexts

3. Gather summary nodes

Inter-pipeline public pre-condition filtering

Note: Valid paths after intra-pipeline redundancy elimination
may be invalid in the integral CFG.

Pipeline 1
Encapsulate VXLAN

into TCP

Pipeline 2
Proto==TCP

…
Proto==UDP

…

VXLAN test

Proto: TCP

Removable

Public pre-condition:
The common conditions shared by the paths from the entry point of
the program to the target pipeline.

Pipeline 1
Encapsulate VXLAN

into TCP

Pipeline 2
Proto==TCP

…
Proto==UDP

…

VXLAN test

Proto: TCP

Removable

Public pre-
condition of
pipeline 2

Inter-pipeline public pre-condition filtering

Algorithm:
1. Collect all valid paths from entry

point of program to the pipeline.
2. Analyze these paths to identify

pre-conditions in common
3. Prune paths with public pre-

conditions

Pipeline 1
Encapsulate VXLAN

into TCP

Pipeline 2

Proto==TCP
…

Proto==UDP
…

VXLAN test

Proto: TCP

Pruned

Public pre-
condition of
pipeline 2

Inter-pipeline public pre-condition filtering

Code summary technique

Decompose
control flow
graph into
individual
pipelines

Simplify
code logics

by removing
unsatisfiable

paths

Summarize
control flow
graph with
simplified

logics

Gather
public
pre-

condition

Iteration over pipelines

Meissa is deployed globally

Since fall 2021, Meissa has been
deployed in more than 200 P4
programmable gateways among 4
continents.

Evaluation methodology

Name LOC # of
pipelines

of
switches

Router 256 1 1
mTag 227 1 1
ACL 400 1 1

switch.p4 7086 1 1
gateway-1 >1000 1 1
gateway-2 >3000 2 1
gateway-3 >10000 4 1
gateway-4 >20000 8 2

Open-
sourced

Industrial
production

Scalability

400X

26.5X

O for time-out, X for non-support

T/O

Bug finding ability

Unknown bugs

Conclusion

Meissa is a scalable network testing system for programmable data planes.

Meissa leverages a domain specific code summary technique to guarantee full
coverage and scalability.

Meissa is developed for programmable switches, but its principals also apply to
other programmable data plane devices.

Our Recent Work on
Software-Defined Cloud Systems

36

Meissa: Scalable Network Testing for Programmable Data Planes

Data Plane: Reliability

Control Plane: Multi-Resource Scheduling
Multi-Resource Interleaving for Deep Learning Training

Multi-Resource Interleaving for
Deep Learning Training

Yihao Zhao, Yuanqiang Liu, Yanghua Peng,
Yibo Zhu, Xuanzhe Liu, Xin Jin

37

Deep Learning Training

Deep Learning (DL) is popular
• DL training becomes an important

workload in enterprises’ clusters

DL training uses multiple
resource types
• DL training is iterative
• DL training is staged and each

stage mainly uses a specific
resource type

Iteration 𝑖Iteration 𝑖 − 1 ...

Iteration 𝑖
1. Load data 2. Preprocess 3. Propagation 4. Communication

Storage IO CPU GPU Network I/O

Computer
Vision

…

Reinforcement
Learning

Natural Language
Processing

Agent Env
Reward

Action

38

A wide spectrum of DL models varies in resource requirements

Storage IO
Bottlenecked

CPU Bottlenecked GPU Bottlenecked Network IO
Bottlenecked

Tiny DL
Models

… … … …

Reinforcement
Learning

Natural Language
Processing Distributed Training

Agent Env
Reward

Action
∇𝑤!

worker 1

∇𝑤"

worker 2

∇𝑤#

worker 3

∇𝑤 ← ∑ ∇𝑤$

Deep Learning Training

39

DL Training in Clusters

Current DL Scheduler:

Most allocate GPUs to a job exclusively

Some explore only GPU sharing

Users and DL training jobs

Agent Env
Reward

Action

Scheduler

Cluster

Node 1

…

Node N

Goal:
• Minimize finish time
• Maximize resource utilization
• …

Miss the opportunity of
multi-resource sharing!

40

41

Miss the opportunity of
multi-resource sharing!

DL Training in Clusters

Current DL Scheduler:

Most allocate GPUs to a job exclusively

Some explore only GPU sharing

Users and DL training jobs

Agent Env
Reward

Action

Scheduler

Cluster

Node 1

…

Node N

Goal:
• Minimize finish time
• Maximize resource utilization
• …

Challenges of multi-resource sharing

• Reduce interference among shared DL jobs

• Improve both job and cluster efficiency

Our approach (Muri)

A DL cluster scheduler that utilizes MUlti-Resource Interleaving to
improve job and cluster efficiency

Multi-resource interleaving
• Pack jobs on the same set of resources by interleaving stages in time
• Reduce interference among shared jobs

Blossom-based scheduler
• Assign sharing groups to maximize interleaving efficiency
• Improve both job and cluster efficiency

42

Muri Architecture

Resource
Profiler

Job
Scheduler

Worker
Monitor

Muri Scheduler

Job Queue
Submit

Job

Muri
Executor

CPU GPU Storage Network

Muri
Executor

CPU GPU Storage Network
43

A B C D

Multi-Resource Sharing

High interference among
shared jobs leads to longer
iteration duration
• At every moment, each

resource type on one machine
can be used by multiple jobs

Low interference among
shared jobs brings shorter
iteration duration
• At every moment, each

resource type on one machine
can be used by only one job

Storage

CPU

time0 1 2 3 4

GPU

Network

5 6 7 8

Storage
CPU

time0 1 2 3 4

A

B

A

B

C

A

B

C

DA

GPU

Network

5 6 7 8

D

A

B

C

A

B

C

D

B

C

D

A

C

D

A

B

Space sharing

Time sharing

😃

☹A B C D
A B C D

A B C D

Iteration duration = 9

Iteration duration = 4

9

9

B

C

D

A

Lengthened due
to interference

A B C D: DL training jobs 44

Resource utilization

Cost

Muri: Multi-Resource Interleaving

Muri exploits fine-grained multi-resource interleaving in time
• Staged pattern of DL training brings inherent stages to interleave
• Iterative pattern of DL training enables low-overhead scheduling decision for interleaving

Load data -- Storage

Preprocess -- CPU

Propagation -- GPU

Communication -- Network

45

Low interference among
shared jobs brings shorter
iteration duration
• At every moment, each

resource type on one machine
can be used by only one job

time0 1 2 3 4

A

B

A

B

C

A

B

C

DA

5 6 7 8

D

A

B

C

A

B

C

D

B

C

D

A

C

D

A

B 😃

Iteration duration = 4

9

B

C

D

A

A B C D: DL training jobs

Multi-Resource Interleaving vs. Pipelining

Multi-resource interleavingPipelining

1.7× higher throughput!

Overlap multiple resources intra-job

Throughput when job A and B are run
separately: !

"."$"."
= !

!!
iterations/s

Overlap multiple resources inter-job

Throughput when job A and B are
interleaved: !

%&'(".",*.")
= !

*."
iterations/s

GPU

time0 1 2 3 4 5

B

6 7

BNetwork

time0 1 2 3 4 5

A

A

6 7

GPU

Network

time0 1 2 3 4 5

A

A

6 7

B

B

GPU

Network

46

Muri: Capture Interleaving Efficiency

Interleaving efficiency represents how perfect a grouping plan can
overlap the resource usage of the jobs

𝛾 =
1
𝑘
%
!"#

$%&
∑'"#
(%& 𝑡'

!

𝑇

Interleaving
efficiency

Occupied time ratio of
each resource

Iteration duration
can be estimated by

𝑇 = +
!"#

$%&

max'"#
(%& 𝑡'

')! *+, $

𝑘: the number of resource types
𝑝: the number of jobs in one group
𝑡'
!: the duration that job 𝑖 uses resource 𝑗

47

Muri Scheduler: Select Jobs to Interleave

Formulate as a maximum weighted matching problem for two resource types
• Node: a group of jobs that are interleaved
• Edge: interleave the jobs in the two nodes
• Edge weight: the interleaving efficiency
• Matching: a grouping plan

A B

C D

1

0.75 0.75

1

11
A B

C D

1

A B

C D
0.75 0.75

1

A B

C D

1 1

All possible
matchings Blossom

Algorithm A B

C D

1

1

Optimal
Matching

Optimal for two resource types

48

Muri Scheduler: Select Jobs to Interleave

For more than two resource types…
• Maximum weighted k-uniform hypergraph matching
• NP-Hard!

B
A

C

D

E

F

0.75 1

49

Muri Scheduler: Select Jobs to Interleave

A B

C D

1

0.75 0.75

1

11
A B

C D

1

A B

C D
0.75 0.75

1

A B

C D

1 1

All possible
matchings Blossom

Algorithm A B

C D

1

1

Optimal
Matching

Merge
Node AB

CD

1

Multi-round for multiple resource types

Multi-round heuristic algorithm for multiple resource types

50

Muri: Other Design Details

Handle multi-GPU jobs
• Only group jobs with the same GPU

requirement as intra-job synchronization
brings slowdown

Optimize interleaving efficiency
• (a) has interleaving efficiency 𝛾 ≈ 0.5
• (b) has interleaving efficiency 𝛾 = 0.4
• Enumerate all orderings of a group as the

ordering of jobs affects the interleaving
efficiency

Optimize average JCT
• Assign a priority to each job
• SRSF when job durations are known
• 2D-LAS when job durations are unknown

time0 1 2 3 4

CPU GPU NetworkStorage

GPUNetwork Storage CPU

5 6

A

B

time0 1 2 3 4

CPU GPU NetworkStorage

5 6

A

B GPU Network StorageCPU

(a) Best ordering

(b) Worst ordering

CPU GPU Network Storage

CPU GPU Network Storage
GPUStorage CPU Network

NetworkGPU CPUStorage

time0 1 2 3 4 5

A

B

synchronize

A

C

GPU
1

GPU
2

Same
Job

slowdown

51

Evaluation

• Implementation: ~7,000 LOC
• PyTorch 1.8.1
• CUDA 11.1

• Testbed
• 64-GPU cluster, NVIDIA Tesla V100 GPU

• Traces
• Philly Trace from Microsoft [Jeon et al. 2019]

• Models
• CV: ResNet18, ShuffleNet, VGG16, VGG19
• NLP: Bert, GPT-2
• RL: A2C, DQN

52

Testbed Experiments: Overall Performance

8 nodes w/ 8 GPUs each (V100)
400 DL jobs submitted over 10s days

Job durations are known

53

Job durations are unknown

Testbed Experiments: Overall Performance

8 nodes w/ 8 GPUs each (V100)
400 DL jobs submitted over 10s days

Job efficiency
• > 𝟐× faster average job completion time

• > 𝟐. 𝟓× faster tail job completion time

Cluster efficiency
• > 𝟏. 𝟒× faster makespan

54

Job durations are known

Job durations are unknown

Testbed Experiments: Detailed Metrics

Job durations are unknown

Higher utilization
• 𝟑𝟔% higher average GPU utilization

• 𝟑𝟎% higher average CPU utilization

• Other resources in our paper!
Higher CPU utilization

Higher GPU utilization

55

Trace-Driven Simulations

Job durations are unknown

� � � 	
� ������

�

�

	

�

�
�

�
��

�%
��

�$
�

��
��

�
� �� �!��!

��"���
�����!
�# ���

� � 	

� ������

�

�

�

�
�

�
��

�$
��

��
"�

�
���

��
��

� �� �!��!
�"���

�����!
�# ���

� � � 	
��������

�

�

�

�
��
�
��
�!
��

�
��
��
��
�

��������

�����

������
� ���

(a) Average JCT (c) 99th%-ile JCT(b) Makespan
56

Trace-Driven Simulations

Job durations are unknown

� � � 	
� ������

�

�

	

�

�
�

�
��

�%
��

�$
�

��
��

�
� �� �!��!

��"���
�����!
�# ���

� � 	

� ������

�

�

�

�
�

�
��

�$
��

��
"�

�
���

��
��

� �� �!��!
�"���

�����!
�# ���

� � � 	
��������

�

�

�

�
��
�
��
�!
��

�
��
��
��
�

��������

�����

������
� ���

(a) Average JCT (c) 99th%-ile JCT(b) Makespan
57

Trace-Driven Simulations

Job durations are unknown

Results: improve up to 6.1× avg. JCT, 1.5× makespan, and 5.4× tail JCT

� � � 	
� ������

�

�

	

�

�
�

�
��

�%
��

�$
�

��
��

�
� �� �!��!

��"���
�����!
�# ���

� � 	

� ������

�

�

�

�
�

�
��

�$
��

��
"�

�
���

��
��

� �� �!��!
�"���

�����!
�# ���

� � � 	
��������

�

�

�

�
��
�
��
�!
��

�
��
��
��
�

��������

�����

������
� ���

(a) Average JCT (c) 99th%-ile JCT(b) Makespan
58

More Experiments in our Paper

• Performance when job durations are known

• More detailed metrics

• Analysis of Muri
• Impact of designs

• Impact of workload distributions

• Impact of inaccurate profiling

• …

59

Conclusion

• Muri: a multi-resource cluster scheduler for DL workloads
• Introduce multi-resource interleaving to share jobs in time

• Utilize a Blossom-based scheduling algorithm to maximize the interleaving efficiency

• Muri improves average JCT by up to 6.1× and makespan by up to 1.6×

Open-sourced at https://github.com/pkusys/Muri

60

https://github.com/pkusys/Muri

61

Thanks!
Xin Jin

xinjinpku@pku.edu.cn

