
High-performance Virtual Memory Design
for Modern Architectures

Rachata Ausavarungnirun
https://rausavar.github.io/

Architecture Research Group

TGGS, KMUTNB

https://rausavar.github.io/

Modern-day Cloud Cluster

2

• Very heterogeneous
• Using GPUs to accelerate applications is very common

• Various workload types
• Each with different demands

• No one size fits all for the page size

• Demand special accelerators

Modern-day Cloud Cluster

3

• Very heterogeneous
• Using GPUs to accelerate applications is very common

• Various workload types
• Each with different demands

• No one size fits all for the page size

• Demand special accelerators

GPU in Modern Systems

4
https://developer.nvidia.com/cuda-toolkithttps://nvidianews.nvidia.com/news/nvidia-gpu-cloud-now-available-to-hundreds-of-thousands-of-ai-researchers-using-nvidia-desktop-gpus

GPUs gain their popularity through their massive parallelism

GPU Core

Private TLB

Virtual Memory on GPUs

5

GPU CoreGPU CoreGPU Core

Shared TLB

Private TLB

Page Table
Walkers

Page Table
(Main memory)

Private TLB Private TLB

Limited TLB reach

High latency
page walks

Data
(Main Memory)

CPU Memory

High
latency

I/O

Private

Shared

CPU-side memory

GPU-side memory

GPU Core

Private TLB

Sharing Makes the Problem Worse

6

GPU CoreGPU CoreGPU Core

Shared TLB

Private TLB

Page Table
Walkers

Page Table
(in main memory)

Private TLB Private TLB

Private

Shared

App 1

App 2

GPU Core

Private TLB

A TLB Miss Stalls Multiple Warps

7

GPU CoreGPU CoreGPU Core

Shared TLB

Private TLB

Page Table
Walkers

Page Table
(in main memory)

Private TLB Private TLB

Private

Shared

App 1

App 2

StalledStalled

Data in a page is
shared by many threads

All threads
access the same page

GPU Core

Private TLB

Multiple Page Walks Happen Together

8

GPU CoreGPU CoreGPU Core

Shared TLB

Private TLB

Page Table
Walkers

Page Table
(in main memory)

Private TLB Private TLB

Private

Shared

App 1

App 2

GPU’s parallelism creates
parallel page walks

Stalled StalledStalledStalled

Data in a page is
shared by many threads

All threads
access the same page

0 0.2 0.4 0.6 0.8 1

Ideal SharedTLB PWCache

Effect of Translation on Performance

9

Normalized Performance

0 0.2 0.4 0.6 0.8 1

Ideal SharedTLB PWCache

Effect of Translation on Performance

10

Normalized Performance

Key Problems: TLB Reach and High PW Latency

0 0.2 0.4 0.6 0.8 1

Ideal SharedTLB PWCache

Effect of Translation on Performance

11

37.4%

Normalized Performance

Redesign GPU Translation

12

•Goals:
1. Higher TLB Reach

2. Low page walk latency

Redesign GPU Translation

13

•Goals:
1. Higher TLB Reach

2. Low page walk latency

Trade-Off with Page Size

14

•Larger pages:
• Better TLB reach
• High demand paging latency

•Smaller pages:
• Lower demand paging latency
• Limited TLB reach

Can we get the best of both page sizes?

Challenges with Multiple Page Sizes

15

Large Page Frame 1

Unallocated App 1 App 2

State-of-the-Art
Time

App 1
Allocation

App 2
Allocation

App 1
Allocation

Large Page Frame 2

GPU Memory

App 2
Allocation

Coalesce
App 1 Pages

Large Page Frame 3

Large Page Frame 4

Large Page Frame 5

Cannot coalesce
(without migrating multiple 4K pages)

Need to search
which pages to coalesce

Coalesce
App 2 Pages

Desirable Allocation

16

Large Page Frame 1

Unallocated App 1 App 2

Desirable Behavior
Time

App 1
Allocation

App 2
Allocation

App 1
Allocation

Large Page Frame 2

GPU Memory

App 2
Allocation

Coalesce
App 1 Pages

Coalesce
App 2 Pages

Large Page Frame 3

Large Page Frame 4

Large Page Frame 5

Can coalesce
(without moving data)

Mosaic

17

Contiguity-Conserving
Allocation

In-Place
Coalescer

Contiguity-Aware
Compaction

Hardware

GPU Runtime

Conserves contiguity within the large page frame

Mosaic: Data Allocation

18

Contiguity-Conserving
Allocation

In-Place
Coalescer

Contiguity-Aware
Compaction

Allocate Memory

Page
Table

Data

2

Large Page Frame

Hardware

GPU Runtime Application Demands Data1

Soft guarantee:
A large page frame contains

pages from only a single address space

• Data transfer is done at a small page granularity
• A page that is transferred is immediately ready to use

Mosaic: Data Allocation

19

Contiguity-Conserving
Allocation

In-Place
Coalescer

Contiguity-Aware
Compaction

Transfer Data

Page
Table

Data
3 System I/O Bus

CPU
Memory

Large Page Frame

Hardware

GPU Runtime

Allocate Memory2

Application Demands Data1

Mosaic: Data Allocation

20

Contiguity-Conserving
Allocation

In-Place
Coalescer

Contiguity-Aware
Compaction

Page
Table

Transfer Done4

Large Page Frame

Data

Hardware

GPU Runtime

Transfer Data

3 System I/O Bus

CPU
Memory

• Fully-allocated large page frame → Coalesceable

• Allocator sends the list of coalesceable pages to the
In-Place Coalescer

Mosaic: Coalescing

21

Contiguity-Conserving
Allocation

In-Place
Coalescer

Contiguity-Aware
Compaction

Large Page Frame

List of large pages1

Large Page Frame

Hardware

GPU Runtime

• In-Place Coalescer has:

• List of coalesceable large pages

• Key Task: Perform coalescing without moving data

• Simply need to update the page tables

Mosaic: Coalescing

22

Contiguity-Conserving
Allocation

In-Place
Coalescer

Contiguity-Aware
Compaction

Page
Table

Data

Hardware

GPU Runtime

Update page tables2List of large pages1

Mosaic: Coalescing

23

Contiguity-Conserving
Allocation

In-Place
Coalescer

Contiguity-Aware
Compaction

Page
Table

Data

Hardware

GPU Runtime

Update page tables2List of large pages1

0

Coalesced Bit

1

Large Page Table Small Page Table

• Application-transparent
• Data can be accessed

using either page size
• No TLB flush

• Splinter only frames with deallocated pages

Mosaic: Data Deallocation

24

Contiguity-Conserving
Allocation

In-Place
Coalescer

Contiguity-Aware
Compaction

Page
Table

Splinter Pages (reset the coalesced bit)2

Large Page Frame

Data

Hardware

GPU Runtime Application Deallocates Data 1

• Compaction decreases memory bloat
• Happens only when memory is highly fragmented

Mosaic: Compaction

25

Contiguity-Conserving
Allocation

In-Place
Coalescer

Contiguity-Aware
Compaction

Page
Table

Compact Pages1

Large Page Frames

Data

Free large page

Hardware

GPU Runtime List of free pages2

Free large page

Performance

26

23.7%
43.1%

31.5%

21.4%

Homogeneous Heterogeneous

39.0%33.8%

55.4%

61.5%

95.0%

0

1

2

3

4

5

6

7

1 2 3 4 5 2 3 4 5

W
e
ig

h
te

d
 S

p
e
e
d

u
p

Number of Concurrently-Executing Applications

GPU-MMU Mosaic Ideal TLB

Mosaic consistently improves performance
across a wide variety of workloads

Mosaic performs within 10% of the ideal TLB

Redesign GPU Translation

27

•Goals:
1. Higher TLB Reach

2. Low page walk latency

Problem 1: Contention at the Shared TLB

28

• Multiple GPU applications contend for the TLB

0.0
0.2
0.4
0.6
0.8
1.0

App 1 App 2 App 1 App 2 App 1 App 2 App 1 App 2

L
2
 T

L
B

 M
is

s
 R

a
te

(L
o
w

e
r

is
 B

e
tt

e
r) Alone Shared

3DS_HISTO CONS_LPS MUM_HISTO RED_RAY

Problem 1: Contention at the Shared TLB

29

• Multiple GPU applications contend for the TLB

0.0
0.2
0.4
0.6
0.8
1.0

App 1 App 2 App 1 App 2 App 1 App 2 App 1 App 2

L
2
 T

L
B

 M
is

s
 R

a
te

(L
o
w

e
r

is
 B

e
tt

e
r) Alone Shared

3DS_HISTO CONS_LPS MUM_HISTO RED_RAY

Contention at the shared TLB leads to lower performance

Problem 2: Thrashing at the L2 Cache

30

• L2 cache can be used to reduce page walk latency
→ Partial translation data can be cached

• Thrashing Source 1: Parallel page walks
→ Different address translation data evicts each other

• Thrashing Source 2: GPU memory intensity
→ Demand-fetched data evicts address translation data

L2 cache is ineffective at reducing page walk latency

Observation: Address Translation Is Latency Sensitive

31

• Multiple warps share data from a single page

0

10

20

30

40

3
D

S
B

F
S

2
B

L
K

B
P

C
F

D
C

O
N

S
F

F
T

F
W

T
G

U
P

S
H

IS
T

O
H

S
J
P

E
G

L
IB

L
P

S
L

U
D

L
U

H
M

M
M

U
M

N
N

N
W

Q
T

C
R

A
Y

R
E

D
S

A
D

S
C

S
C

A
N

S
C

P
S

P
M

V
S

R
A

D
T

R
D

A
v
e
ra

g
eW

a
rp

s
 S

ta
ll
e

d
P

e
r

O
n

e
 T

L
B

 M
is

s

A single TLB miss causes 8 warps to stall on average

Observation: Address Translation Is Latency Sensitive

32

• Multiple warps share data from a single page

• GPU’s parallelism causes multiple concurrent page walks

0

20

40

60

3
D

S
B

F
S

2
B

L
K

B
P

C
F

D
C

O
N

S
F

F
T

F
W

T
G

U
P

S
H

IS
T

O
H

S
J
P

E
G

L
IB

L
P

S
L

U
D

L
U

H
M

M
M

U
M

N
N

N
W

Q
T

C
R

A
Y

R
E

D
S

A
D

S
C

S
C

A
N

S
C

P
S

P
M

V
S

R
A

D
T

R
D

A
v
e
ra

g
e

C
o

n
c
u

rr
e
n

t
P

a
g

e
 W

a
lk

s

High address translation latency →More stalled warps

MASK Design Goals

33

•Reduce shared TLB contention

• Improve L2 cache utilization

•Lower page walk latency

MASK: A Translation-aware Memory Hierarchy

34

•Reduce shared TLB contention
A. TLB-fill Tokens

• Improve L2 cache utilization
B. Translation-aware L2 Bypass

•Lower page walk latency
C. Address-space-aware Memory Scheduler

A: TLB-fill Tokens

35

• Goal: Limit the number of warps that can fill the TLB
→ A warp with a token fills the shared TLB

→ A warp with no token fills a very small bypass cache

• Number of tokens changes based on TLB miss rate
→ Updated every epoch

• Tokens are assigned based on warp ID

Benefit: Limits contention at the shared TLB

B: Translation-aware L2 Bypass

36

• L2 hit rate decreases for deep page walk levels

0 0.2 0.4 0.6 0.8 1

L2 Cache Hit Rate

Page Table Level 1

B: Translation-aware L2 Bypass

37

• L2 hit rate decreases for deep page walk levels

0 0.2 0.4 0.6 0.8 1

L2 Cache Hit Rate

Page Table Level 1
Page Table Level 2

B: Translation-aware L2 Bypass

38

• L2 hit rate decreases for deep page walk levels

0 0.2 0.4 0.6 0.8 1

L2 Cache Hit Rate

Page Table Level 1
Page Table Level 2
Page Table Level 3

B: Translation-aware L2 Bypass

39

• L2 hit rate decreases for deep page walk levels

Some address translation data does not benefit from caching

Only cache address translation data with high hit rate

0 0.2 0.4 0.6 0.8 1

L2 Cache Hit Rate

Page Table Level 1
Page Table Level 2
Page Table Level 3
Page Table Level 4

Cache

0 0.2 0.4 0.6 0.8 1

B: Translation-aware L2 Bypass

40

• Goal: Cache address translation data with high hit rate

L2 Cache Hit Rate

Page Table Level 1
Page Table Level 2
Page Table Level 3
Page Table Level 4 Bypass

Benefit 1: Better L2 cache utilization for translation data

Benefit 2: Bypassed requests → No L2 queuing delay

Average L2 Cache Hit Rate

C: Address-space-aware Memory Scheduler

41

• Cause: Address translation requests are treated similarly
to data demand requests

Idea: Lower address translation request latency

0

100

200

300

400

500

D
R

A
M

 L
a

te
n

c
y

0.0

0.2

0.4

0.6

0.8

1.0

D
R

A
M

 B
a

n
d

w
id

th

Address Translation Requests Data Demand Requests

C: Address-space-aware Memory Scheduler

42

• Idea: Prioritize address translation requests
over data demand requests

To
DRAM

Memory Scheduler

Golden Queue

Address Translation Request

Normal Queue

Data Demand Request

High Priority

Low Priority

0.0

0.5

1.0

1.5

2.0

2.5

0-HMR 1-HMR 2-HMR Average

N
o

rm
a

li
z
e

d

P
e
rf

o
rm

a
n

c
e

PWCache SharedTLB MASK Ideal

Performance

43

57.8%52.0%
61.2%58.7%

MASK outperforms state-of-the-art design for every workload

Modern-day Cloud Cluster

44

• Very heterogeneous
• Using GPUs to accelerate applications is very common

• Various workload types
• Each with different demands

• No one size fits all for the page size

• Demand special accelerators

• Benefit from larger TLB reach

• Key problems:
• Fragmentation and bloat

• Page replacement at large granularity

• Huge page promotion/demotion

45

Problem: Fidelity loss from using huge page

System with Huge Pages

46

Ok … That window is dirty

Small Page

Let me go and clean it

Ok … That whole side is dirty

Large Page

Let’s clean this whole side!

Fidelity Loss in 2MB Page Size

• Allows hardware to tag pages’ information
• Accessed bits

• Present bits

• Dirty bits

• OS uses this information to manage pages
• Replacement policy

• Mapping of fast/slow memory

47

Problems: Metadata bit is coupled to page size
1) Reduced fidelity as page size increases
2) OS’ visibility into sub-page information reduces

2MB PTE

Physical Frame Number metadata

020 1163

Metadata Bits

H
o

tn
es

s

48

Huge page metadata marks the entire huge page as hot!
(More analysis in the paper)

Only a small fraction of the huge page are actually hot

Issues with Single Granularity

• Decouple metadata granularity from page sizes

• Allow finer-grain and variable metadata granularity

• Based on applications’ demand

• Work on systems that utilize huge pages

• Applicable to CPU

• Applicable to GPU

49

PRISM Goals

50

Virtual Address index 4

CR3 L4 PTE

offset

11 020293847

index 3 index 2 index 1

L3 PTE

2MB PTE

MRE

2MB PTE

Metadata Registry Entry (MRE)

Physical Frame Number unused metadata

020 1163

063

Dirty BitsAccessed Bits

31

Physical Address MRE = Physical Address 2MB PTE + 4KB

1 bit: MRE present
3 bits: granularity of accessed bits
3 bits: granularity of dirty bits
2 bits: unused

PRISM: Overview

51

• System call interface similar to mprotect

int mmdconfig(void *addr, size_t len, int mdtype, int bits);

PRISM: Software Interface

• Extend Mosaic to
- Models metadata (accessed/dirty) bits

- Models LRU page replacement policy

- Tracks page location (CPU’s DRAM vs. GPU’s DRAM)

• NVIDIA GTX750 Ti

• 15 GPGPU workloads

52

Case Study: Extend Mosaic for Demand Paging

53

0

0.2

0.4

0.6

0.8

1

1.2
Baseline-512bit PRISM-32bit PRISM-8bit Baseline-1bit

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

PRISM is effective when applications demand fine-grain metadata

Baseline 4KB PRISM-32bit PRISM-8bit Baseline 2MB

Demand Paging Performance

Modern-day Cloud Cluster

54

• Very heterogeneous
• Using GPUs to accelerate applications is very common

• Various workload types
• Each with different demands

• No one size fits all for the page size

• Demand special accelerators

• Genome sequence analysis is critical for many applications

• Personalized medicine

• Outbreak tracing

• Evolutionary studies

• Genome sequencing machines extract smaller fragments of the original
DNA sequence, known as reads

AAGCTTCCATGG

AAATGGGCTTTC

GCCCAAATGGTT

GCTTCCAGAATG

Genome Sequence Analysis

• Read mapping: first key step in genome sequence analysis

…GCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTCCACAATG…

- Aligns reads to potential matching locations in the reference genome

Reference Genome

Differences Differences

- For each matching location, the alignment step finds the degree of
similarity (alignment score)

AAGCTTCCATGG
GCCCAAATGGTT

GCTTCCAGAATG

AAATGGGCTTTC
• Calculating the alignment score requires computationally-expensive

approximate string matching (ASM) to account for differences between
reads and the reference genome due to:

- Sequencing errors

- Genetic variation

Genome Sequence Analysis

Computation overhead

Data movement overhead

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Alignment

Data Movement from Storage

Storage
System

Genome Sequence Analysis

Heuristics Accelerators Filters

Computation overhead

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory
Storage
System

Data movement overhead

✓

Traditional Solution: Accelerator

Storage
System

Non-matching reads
Do not have potential matching locations and can skip alignment

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

Exactly-matching reads
Do not need expensive approximate string matching during alignment

Alternate Solution: In-SSD Computation

Read mapping workloads can exhibit different behavior

There are limited hardware resources
in the storage system

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory
Storage
System

Key Challenges

Computation overhead

Data movement overhead

GenStore provides significant speedup (1.4x - 33.6x) and
energy reduction (3.9x – 29.2x) at low cost

Filter reads that do not require alignment
inside the storage system

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

GenStore-Enabled
Storage
System

✓
✓

GenStore: In-storage Processing

Recap

62

• Modern systems are very heterogeneous
• Require CPU-like virtual memory support

• Issues with virtual memory design
• Limited TLB reach and high PW latency

• Solution:
• Smart use of huge page

• Accelerate page walk requests

• Decouple metadata from page sizes

• Various workload types, each with different demands
• Integration with accelerators

• Solution: In-memory and In-storage accelerators

More Info on the Direction

63

• Virtual memory design for heterogeneous datacenters
• Ausavarungnirun et al. “Mosaic: A GPU Memory Manager with Application-

Transparent Support for Multiple Page Sizes”, MICRO 2017
• Ausavarungnirun et al. “MASK: Redesigning the GPU Memory Hierarchy to Support

Multi-Application Concurrency”, ASPLOS 2018
• Ausavarungnirun et al. “PRISM: Architectural Support for Variable-granularity

Memory Metadata”, PACT 2020

• Memory management in datacenters
• Li et al. “A Framework for Memory Oversubscription Management in Graphics

Processing Units”, ASPLOS 2019
• Li et al. “Improving Inter-kernel Data Reuse With CTA-Page Coordination in GPGPU”,

ICCAD 2021
• Choi et al. “Memory Harvesting in Multi-GPU Systems with Hierarchical Unified

Virtual Memory”, USENIX ATC 2022

• In-memory and In-storage accelerators for DNA sequencing
• Senol et al. “GenASM: A Low-Power, Memory-Efficient Approximate String Matching

Acceleration Framework for Genome Sequence Analysis”, MICRO 2020
• Ghiasi et al. “GenStore: A High-Performance and Energy-Efficient In-Storage

Computing System for Genome Sequence Analysis”, ASPLOS 2022

High-performance Virtual Memory Design
for Modern Architectures

Rachata Ausavarungnirun
https://rausavar.github.io/

Architecture Research Group

TGGS, KMUTNB

https://rausavar.github.io/

