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Modern-day Cloud Cluster
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• Very heterogeneous
• Using GPUs to accelerate applications is very common

• Various workload types
• Each with different demands

• No one size fits all for the page size

• Demand special accelerators
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GPU in Modern Systems
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https://developer.nvidia.com/cuda-toolkithttps://nvidianews.nvidia.com/news/nvidia-gpu-cloud-now-available-to-hundreds-of-thousands-of-ai-researchers-using-nvidia-desktop-gpus

GPUs gain their popularity through their massive parallelism 



GPU Core

Private TLB

Virtual Memory on GPUs
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GPU Core

Private TLB

Sharing Makes the Problem Worse
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GPU Core

Private TLB

A TLB Miss Stalls Multiple Warps
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GPU Core

Private TLB

Multiple Page Walks Happen Together
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Key Problems: TLB Reach and High PW Latency
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37.4%

Normalized Performance



Redesign GPU Translation
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•Goals:
1. Higher TLB Reach

2. Low page walk latency
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Trade-Off with Page Size
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•Larger pages: 
• Better TLB reach
• High demand paging latency

•Smaller pages: 
• Lower demand paging latency
• Limited TLB reach

Can we get the best of both page sizes?



Challenges with Multiple Page Sizes
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Desirable Allocation
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Mosaic
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Conserves contiguity within the large page frame

Mosaic: Data Allocation
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• Data transfer is done at a small page granularity
• A page that is transferred is immediately ready to use

Mosaic: Data Allocation
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Mosaic: Data Allocation
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• Fully-allocated large page frame → Coalesceable

• Allocator sends the list of coalesceable pages to the  
In-Place Coalescer

Mosaic: Coalescing
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• In-Place Coalescer has:

• List of coalesceable large pages

• Key Task: Perform coalescing without moving data

• Simply need to update the page tables

Mosaic: Coalescing
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Mosaic: Coalescing
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• Splinter only frames with deallocated pages

Mosaic: Data Deallocation
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• Compaction decreases memory bloat
• Happens only when memory is highly fragmented

Mosaic: Compaction
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Performance
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Redesign GPU Translation
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•Goals:
1. Higher TLB Reach

2. Low page walk latency



Problem 1: Contention at the Shared TLB
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• Multiple GPU applications contend for the TLB
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Contention at the shared TLB leads to lower performance



Problem 2:  Thrashing at the L2 Cache
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• L2 cache can be used to reduce page walk latency
→ Partial translation data can be cached

• Thrashing Source 1: Parallel page walks
→ Different address translation data evicts each other

• Thrashing Source 2: GPU memory intensity
→ Demand-fetched data evicts address translation data

L2 cache is ineffective at reducing page walk latency



Observation: Address Translation Is Latency Sensitive

31

• Multiple warps share data from a single page
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A single TLB miss causes 8 warps to stall on average



Observation: Address Translation Is Latency Sensitive
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• Multiple warps share data from a single page

• GPU’s parallelism causes multiple concurrent page walks
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MASK Design Goals
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•Reduce shared TLB contention

• Improve L2 cache utilization

•Lower page walk latency



MASK: A Translation-aware Memory Hierarchy
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•Reduce shared TLB contention
A. TLB-fill Tokens

• Improve L2 cache utilization
B. Translation-aware L2 Bypass

•Lower page walk latency
C. Address-space-aware Memory Scheduler



A: TLB-fill Tokens
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• Goal: Limit the number of warps that can fill the TLB
→ A warp with a token fills the shared TLB

→ A warp with no token fills a very small bypass cache

• Number of tokens changes based on TLB miss rate
→ Updated every epoch

• Tokens are assigned based on warp ID

Benefit: Limits contention at the shared TLB



B: Translation-aware L2 Bypass
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• L2 hit rate decreases for deep page walk levels
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B: Translation-aware L2 Bypass
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• L2 hit rate decreases for deep page walk levels

Some address translation data does not benefit from caching

Only cache address translation data with high hit rate
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Cache
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B: Translation-aware L2 Bypass
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• Goal: Cache address translation data with high hit rate

L2 Cache Hit Rate

Page Table Level 1
Page Table Level 2
Page Table Level 3
Page Table Level 4 Bypass

Benefit 1: Better L2 cache utilization for translation data

Benefit 2: Bypassed requests → No L2 queuing delay

Average L2 Cache Hit Rate



C: Address-space-aware Memory Scheduler
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• Cause: Address translation requests are treated similarly 
to data demand requests

Idea: Lower address translation request latency
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C: Address-space-aware Memory Scheduler
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• Idea: Prioritize address translation requests
over data demand requests

To 
DRAM

Memory Scheduler

Golden Queue

Address Translation Request

Normal Queue

Data Demand Request

High Priority

Low Priority
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57.8%52.0%
61.2%58.7%

MASK outperforms state-of-the-art design for every workload



Modern-day Cloud Cluster
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• Very heterogeneous
• Using GPUs to accelerate applications is very common

• Various workload types
• Each with different demands

• No one size fits all for the page size

• Demand special accelerators



• Benefit from larger TLB reach

• Key problems:
• Fragmentation and bloat

• Page replacement at large granularity

• Huge page promotion/demotion

45

Problem: Fidelity loss from using huge page

System with Huge Pages
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Ok … That window is dirty

Small Page

Let me go and clean it

Ok … That whole side is dirty

Large Page

Let’s clean this whole side!

Fidelity Loss in 2MB Page Size



• Allows hardware to tag pages’ information
• Accessed bits

• Present bits

• Dirty bits

• OS uses this information to manage pages
• Replacement policy

• Mapping of fast/slow memory

47

Problems: Metadata bit is coupled to page size
1) Reduced fidelity as page size increases
2) OS’ visibility into sub-page information reduces

2MB PTE

Physical Frame Number metadata

020 1163

Metadata Bits
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Huge page metadata marks the entire huge page as hot!
(More analysis in the paper)

Only a small fraction of the huge page are actually hot

Issues with Single Granularity



• Decouple metadata granularity from page sizes

• Allow finer-grain and variable metadata granularity

• Based on applications’ demand

• Work on systems that utilize huge pages

• Applicable to CPU

• Applicable to GPU

49

PRISM Goals
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Virtual Address index 4

CR3 L4 PTE

offset

11 020293847

index 3 index 2 index 1

L3 PTE

2MB PTE

MRE

2MB PTE

Metadata Registry Entry (MRE)

Physical Frame Number unused metadata

020 1163

063

Dirty BitsAccessed Bits
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Physical Address MRE = Physical Address 2MB PTE + 4KB

1 bit: MRE present
3 bits: granularity of accessed bits
3 bits: granularity of dirty bits
2 bits: unused

PRISM: Overview
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• System call interface similar to mprotect

int mmdconfig(void *addr, size_t len, int mdtype, int bits);

PRISM: Software Interface



• Extend Mosaic to
- Models metadata (accessed/dirty) bits

- Models LRU page replacement policy

- Tracks page location (CPU’s DRAM vs. GPU’s DRAM)

• NVIDIA GTX750 Ti

• 15 GPGPU workloads

52

Case Study: Extend Mosaic for Demand Paging
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Modern-day Cloud Cluster
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• Using GPUs to accelerate applications is very common

• Various workload types
• Each with different demands

• No one size fits all for the page size
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• Genome sequence analysis is critical for many applications

• Personalized medicine

• Outbreak tracing

• Evolutionary studies

• Genome sequencing machines extract smaller fragments of the original 
DNA sequence, known as reads

AAGCTTCCATGG

AAATGGGCTTTC

GCCCAAATGGTT

GCTTCCAGAATG

Genome Sequence Analysis



• Read mapping: first key step in genome sequence analysis

…GCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTCCACAATG…

- Aligns reads to potential matching locations in the reference genome

Reference Genome

Differences Differences

- For each matching location, the alignment step finds the degree of 
similarity (alignment score)

AAGCTTCCATGG
GCCCAAATGGTT

GCTTCCAGAATG

AAATGGGCTTTC
• Calculating the alignment score requires computationally-expensive

approximate string matching (ASM) to account for differences between 
reads and the reference genome due to:

- Sequencing errors

- Genetic variation

Genome Sequence Analysis



Computation overhead

Data movement overhead 
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Heuristics Accelerators Filters

Computation overhead
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Traditional Solution: Accelerator



Storage
System

Non-matching reads
Do not have potential matching locations and can skip alignment

Filter reads that do not require alignment
inside the storage system
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Exactly-matching reads
Do not need expensive approximate string matching during alignment

Alternate Solution: In-SSD Computation



Read mapping workloads can exhibit different behavior

There are limited hardware resources 
in the storage system

Filter reads that do not require alignment
inside the storage system
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Key Challenges



Computation overhead

Data movement overhead 

GenStore provides significant speedup (1.4x - 33.6x) and  
energy reduction (3.9x – 29.2x) at low cost

Filter reads that do not require alignment
inside the storage system

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

GenStore-Enabled
Storage
System

✓
✓

GenStore: In-storage Processing



Recap
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• Modern systems are very heterogeneous
• Require CPU-like virtual memory support

• Issues with virtual memory design
• Limited TLB reach and high PW latency

• Solution: 
• Smart use of huge page

• Accelerate page walk requests

• Decouple metadata from page sizes

• Various workload types, each with different demands
• Integration with accelerators

• Solution: In-memory and In-storage accelerators



More Info on the Direction
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• Virtual memory design for heterogeneous datacenters
• Ausavarungnirun et al. “Mosaic: A GPU Memory Manager with Application-

Transparent Support for Multiple Page Sizes”, MICRO 2017
• Ausavarungnirun et al. “MASK: Redesigning the GPU Memory Hierarchy to Support 

Multi-Application Concurrency”, ASPLOS 2018
• Ausavarungnirun et al. “PRISM: Architectural Support for Variable-granularity 

Memory Metadata”, PACT 2020

• Memory management in datacenters
• Li et al. “A Framework for Memory Oversubscription Management in Graphics 

Processing Units”, ASPLOS 2019
• Li et al. “Improving Inter-kernel Data Reuse With CTA-Page Coordination in GPGPU”, 

ICCAD 2021
• Choi et al. “Memory Harvesting in Multi-GPU Systems with Hierarchical Unified 

Virtual Memory”, USENIX ATC 2022

• In-memory and In-storage accelerators for DNA sequencing
• Senol et al. “GenASM: A Low-Power, Memory-Efficient Approximate String Matching

Acceleration Framework for Genome Sequence Analysis”, MICRO 2020
• Ghiasi et al. “GenStore: A High-Performance and Energy-Efficient In-Storage 

Computing System for Genome Sequence Analysis”, ASPLOS 2022
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