High-performance Virtual Memory Design
for Modern Architectures

Rachata Ausavarungnirun
https://rausavar.github.io/

Architecture Research Group
TGGS, KMUTNB

The Sirindhorn International

>0 & i3] O
P‘s‘//‘y 3.2/ oY,

KMUTNB

https://rausavar.github.io/

Modern-day Cloud Cluster

* Very heterogeneous
* Using GPUs to accelerate applications is very common

* Various workload types
e Each with different demands
* No one size fits all for the page size
 Demand special accelerators

Modern-day Cloud Cluster

* Very heterogeneous
* Using GPUs to accelerate applications is very common

GPU in Modern Systems

<

NVIDIA.
GPU CLOUD

[GPUS gain their popularity through their massive parallelism

https://deiditomarnriddiaooni¢ndatpoliiia-gpu-cloud-now-available-to-hundreds-of-thousands-of-ai-researchers-using-nvidia-desktop-gpus

Virtual Memory on GPUs

‘ Private TLB \ ‘ Private TLB \ ‘ Private TLB \ ‘ Private TLB \

High latency
page walks

_______________________ Private_
Shared
Shared TLB Limited TLB reach
Page Table
Walkers
B NN High _GPU-side memory
Page Table latency ; CPU-side memory
(Main memory) /0 !
|
Data -
(Main Memory) ﬁ. AR) 5

Sharing Makes the Problem Worse

‘ Private TLB \ ‘ Private TLB \ ‘ Private TLB \ ‘ Private TLB \
Prlvate

Shared TLB

>

Page Table

Walkers . App 1
]
Page Table . App 2
(in main memory) 6

A TLB Miss Stalls Multiple Warps

Data in a page is
shared by many threads

’ »

ivate TLB

rivate TLB

Private TLB Private TLB

£
x

e
x

All threads
access the same page

Shared TLB

>

Page Table

Walkers

)

Page Table
(in main memory)

Private

Multiple Page Walks Happen Together

Data in a page is GPU’s parallelism creates
shared by many threads parallel page walks

ivate TLB rivate TLB Private TLB Private TLB

— N BB e Private_
K K Shared
Shared TLB
——— Page Table
All threads Walkers . App 1
access the same page T3388
Page Table . App 2

(in main memory) g

Effect of Translation on Performance

B |deal

0 0.2 0.4 0.6 0.8 1
Normalized Performance

Effect of Translation on Performance

®Ildeal OSharedTLB

0 0.2 0.4 0.6 0.8
Normalized Performance

10

Effect of Translation on Performance

®ldeal OSharedTLB m®mPWCache

0 0.2 0.4 0.6 0.8 1
Normalized Performance

Key Problems: TLB Reach and High PW Latency

11

Redesign GPU Translation

* Goals:
1. Higher TLB Reach

2. Low page walk latency

Redesign GPU Translation

* Goals:
1. Higher TLB Reach

Trade-Off with Page Size

* Larger pages:
* Better TLB reach
* High demand paging latency

*Smaller pages:

* Lower demand paging latency
* Limited TLB reach

(Can we get the best of both page sizes? J

14

Challenges with Multiple Page Sizes

State-of-the-Art

Time
App 1
Allocation GPU Memory
App 2 Large Page Frame 1 /
Allocation Large Page Frame 2 x
App 1 Large Page Frame 3 x
Allocation Large Page Frame 4 X
App 2 Large Page Frame 5 /
Allocation
Coalesce Cannot coalesce
App 1Pages | (without migrating multiple 4K pages)
Coalesce |
App 2 Pages
v Need to search

App1 [App2

15

which pages to coalesce

Desirable Allocation

Desirable Behavior

Time
App 1
Allocation GPU Memory
Large Page Frame 1
App 2 ge Pag v
Allocation Large Page Frame 2 /
App 1 Large Page Frame 3 /
Allocation Large Page Frame 4 /
App 2 Large Page Frame 5 /
Allocation
Coalesce Can coalesce
App 1 Pages
App 2 Pages
v

Unallocated App 1 . App 2

16

Mosalc

GPU Runtime

Contiguity-Conserving - In-Place | Contiguity-Aware @
Allocation , Coalescer Compaction

_________________________ . Hardware

17

Mosaic: Data Allocation

o Application Demands Data

Contiguity-Conserving

Allocation

o Allocate Memory

Large Page Frame

Page :
Table
7 Soft guarantee:

Data A large page frame contains
pages from only a single address space

Conserves contiguity within the large page frame

18

Mosaic: Data Allocation

o Application Demands Data

Contiguity-Conserving

Allocation

e Allocate Memory

Large Page Frame

\ 4
rage | | [OO00OOOC]
Table 7

Transfer Data

Data [*

CPU
€) System 1/0 Bus Memory

e Data transfer is done at a small page granularity
* A page that is transferred is immediately ready to use

19

Mosaic: Data Allocation

Contiguity-Conserving

Allocation

e Transfer Done

Large Page Frame

rage | | [OOOOOOOC]
Table 7
Transfer Data

Data ¢
e System 1/0 Bus

Mosaic: Coalescing

Contiguity-Conserving
Allocation
o List of large pages

Large Page Frame

oo,

Large Page Frame

(N

* Fully-allocated large page frame = Coalesceable

* Allocator sends the list of coalesceable pages to the

In-Place Coalescer

21

Mosaic: Coalescing

Contiguity-Conserving In-Place

Allocation Coalescer

0 List of large pages 9 Update page tables

>

’ Page

* In-Place Coalescer has: Table
* List of coalesceable large pages

Data

* Key Task: Perform coalescing without moving data
* Simply need to update the page tables

Mosaic: Coalescing

Contiguity-Conserving In-Place

Allocation Coalescer

o List of large pages

9 Update page tables
>

Page
Large Page Table Small Page Table |

Table
1 > /
Coalesced Bit P Data

N * Application-transparent

 Data can be accessed
using either page size

* No TLB flush 23

Mosaic: Data Deallocation

Page
Table

Application Deallocates Data o

. Contiguity-Aware_ .

Compaction

9 Splinter Pages (reset the coalesced bit)

Data

Large Page Frame

[OOOOC L]

 Splinter only frames with deallocated pages

24

Mosaic: Compaction

v

Large Page Frames

8

Page
Table

I Free large page I
I Free large page I

Data

- e List of free pages

Compaction

o Compact Pages

 Compaction decreases memory bloat
* Happens only when memory is highly fragmented

25

Performance

Homogeneous Heterogeneous
o 7 0o GPU-MMU Mosaic Ideal TLB
= 6 SR
8 43.1%§""-"
m 5 A
Q) |
wm 4 31.5%\| L
Af
8 3 61.5% 21.4% .
e 2 A
%, 95.0% B
O -
()
; 0

1 2 3 4 5 2 3 4
Number of Concurrently-Executing Applications

Mosaic consistently improves performance
across a wide variety of workloads

)

Mosaic performs within 10% of the ideal TLB

Redesign GPU Translation

e Goals:

2. Low page walk latency

Problem 1: Contention at the Shared TLB

* Multiple GPU applications contend for the TLB

m Alone

' N

Appl App2 | Appl App2 i Appl App2 | Appl App?2
3DS_HISTO CONS_LPS ' MUM_HISTO RED_RAY

COOO0Om
oMM O ®O

L2 TLB Miss Rate
(Lower is Better)

28

Problem 1: Contention at the Shared TLB

* Multiple GPU applications contend for the TLB
® Alone ® Shared

ddaslidal

Appl App2 | Appl App2 i Appl App2 | Appl App?2
3DS_HISTO CONS_LPS ' MUM_HISTO RED_RAY

COOO0Om
oMM O ®O

L2 TLB Miss Rate
(Lower is Better)

(Contention at the shared TLB leads to lower performance)

29

Problem 2: Thrashing at the L2 Cache

e L2 cache can be used to reduce page walk latency
- Partial translation data can be cached

* Thrashing Source 1: Parallel page walks
- Different address translation data evicts each other

* Thrashing Source 2: GPU memory intensity
- Demand-fetched data evicts address translation data

(L2 cache is ineffective at reducing page walk latency J

30

Observation: Address Translation Is Latency Sensitive

* Multiple warps share data from a single page

a4

T T
o O O
< M N

T
o O
—i

abelony

| gyl
| avys
| ANdS
| dOS
| NVOS
| OS

| avs
ReEE
| AV
| 010
| MN

| NN

| INNIN
| AN

| HN
| ant
| Sd1
E:lh
BEEN
| SH

| OLSIH
| SdN9
B
BEE
SNOD

ddo
dd

Rk
| ¢sd9
sae

SSIN g1 auQ Jad
pajfel1s sdrepn

(A single TLB miss causes 8 warps to stall on average)

Observation: Address Translation Is Latency Sensitive

* Multiple warps share data from a single page

* GPU’s parallelism causes multiple concurrent page walks
60

AN
o
|

Page Walks
N
o

Concurrent

o

Average

(High address translation latency = More stalled warps J

MASK Design Goals

 Reduce shared TLB contention

*Improve L2 cache utilization

* Lower page walk latency

33

MASK: A Translation-aware Memory Hierarchy

 Reduce shared TLB contention
A. TLB-fill Tokens

*Improve L2 cache utilization
B. Translation-aware L2 Bypass

* Lower page walk latency
C. Address-space-aware Memory Scheduler

34

A: TLB-fill Tokens

e Goal: Limit the number of warps that can fill the TLB
- A warp with a token fills the shared TLB
- A warp with no token fills a very small bypass cache

* Number of tokens changes based on TLB miss rate
- Updated every epoch

* Tokens are assigned based on warp ID

Benefit: Limits contention at the shared TLB

B: Translation-aware L2 Bypass

L2 hit rate decreases for deep page walk levels

page Table Lovel 1 [

0 0.2 0.4 0.6 0.8 1

L2 Cache Hit Rate

36

B: Translation-aware L2 Bypass

* L2 hit rate decreases for deep page walk levels

Page Table Level 1
Page Table Level 2

0 0.2 0.4 0.6 0.8
L2 Cache Hit Rate

37

B: Translation-aware L2 Bypass

L2 hit rate decreases for deep page walk levels

Page Table Level 1

Page Table Level 2
Page Table Level 3

0 0.2 0.4 0.6 0.8 1
L2 Cache Hit Rate

B: Translation-aware L2 Bypass

L2 hit rate decreases for deep page walk levels

Page Table Level 1

Page Table Level 2
Page Table Level 3

Page Table Level 4

0 0.2 0.4 0.6 0.8 1
L2 Cache Hit Rate

Some address translation data does not benefit from caching

(Only cache address translation data with high hit rate J

39

B: Translation-aware L2 Bypass

* Goal: Cache address translation data with high hit rate

Page Table Level 1

Page Table Level 2
Page Table Level 3

Page Table Level 4

Average L2 Cache Hit Rate

Cache

0.2

Bypass % :
0.4 0.6

L2 Cache Hit Rate

0.8

(Benefit 1: Better L2 cache utilization for translation data

(Benefit 2: Bypassed requests 2 No L2 queuing delay

)
J

40

C: Address-space-aware Memory Scheduler

e Cause: Address translation requests are treated similarly
to data demand requests

Bl Address Translation Requests B Data Demand Requests

< 1.0 -, 500
-:% 08 % 400 -
206 © 300 -
; 0.4 <§z 200
<02 - X 100 -
0 0.0 - 0 -

Idea: Lower address translation request latency

41

C: Address-space-aware Memory Scheduler

* |dea: Prioritize address translation requests
over data demand requests

High Priority LG
olden Queue

A\ 4

Address Translation Request

To
Normal Queue DRAM
Data Demand Request — —>I .:-
Memory Scheduler

Low Priority

42

Performance

mPWCache 0OSharedTLB ®BMASK Bideal

N
&

N
o

58.7% 61.2% 59 0% 57.8%

Normalized
Performance
= -
o o1

O
Ul

0.0 -

0-HMR 1-HMR 2-HMR Average

MASK outperforms state-of-the-art design for every workload

43

Modern-day Cloud Cluster

* Various workload types
e Each with different demands
* No one size fits all for the page size

System with Huge Pages

* Benefit from larger TLB reach

* Key problems:
* Fragmentation and bloat
* Page replacement at large granularity
* Huge page promotion/demotion

(Problem: Fidelity loss from using huge page

Fidelity Loss in 2MB Page Size

Small Page

111

(Ok ... That window is dirty)

(Let me go and clean it)

Large Page H AL

(Ok ... That whole side is dirty)

(Let’s clean this whole side!) | AL

46

Metadata Bits

* Allows hardware to tag pages’ information

e Accessed bits
* Present bits 63

2MB PTE

20

11

0

* Dirty bits

Physical Frame Number

metadata

e OS uses this information to manage pages

* Replacement policy
* Mapping of fast/slow memory

-

Problems: Metadata bit is coupled to page size
1) Reduced fidelity as page size increases
\ 2) OS’ visibility into sub-page information reduces

v

Issues with Single Granularity

*HB‘ '

- Y-+— ++-®+¢+—+-+—T--+—++{v4—---l—++

o

o o (=]

SSQUIOH

Only a small fraction of the huge page are actually hot

J

Huge page metadata marks the entire huge page as hot!
(More analysis in the paper)

(

48

PRISM Goals

* Decouple metadata granularity from page sizes

* Allow finer-grain and variable metadata granularity
* Based on applications” demand

* Work on systems that utilize huge pages
* Applicable to CPU
* Applicable to GPU

PRISM: Overview

Virtual Address

CR3

47 38 29 20 11 0
index 4 index 3 index 2 index 1 offset
/7 /' 2MB PTE
3PTE [63 20 11
Physical Frame Number unused | metadata
—>»1 L4 PTE —>»1 2MB PTE
1
1
| 1 bit: MRE present
: 3 bits: granularity of accessed bits
! 3 bits: granularity of dirty bits
Metadata Registry Entry (MRE) ! 2 bits: unused
1

63

Physical Address MRE = Physical Address 2MB PTE + 4KB

50

PRISM: Software Interface

 System call interface similar to mprotect

int mmdconfig(void *addr, size_t len, int mdtype, int bits);

Case Study: Extend Mosaic for Demand Paging

* Extend Mosaic to
- Models metadata (accessed/dirty) bits

- Models LRU page replacement policy
- Tracks page location (CPU’s DRAM vs. GPU’s DRAM)

* NVIDIA GTX750 Ti

e 15 GPGPU workloads

Normalized Performance

Demand Paging Performance

m Baseline 4KB O PRISM-32bit O PRISM-8bit m Baseline 2MB

=
N

© o o ©
N B OO O

07
>

(

PRISM is effective when applications demand fine-grain metadata

53

Modern-day Cloud Cluster

 Demand special accelerators

Genome Sequence Analysis

 Genome sequence analysis is critical for many applications
* Personalized medicine
* Outbreak tracing
* Evolutionary studies

* Genome sequencing machines extract smaller fragments of the original
DNA sequence, known as reads

| =

Genome Sequence Analysis

. first key step in genome sequence analysis

- Aligns reads to potential matching locations in the reference genome

- For each matching location, the alignment step finds the degree of
similarity (alignment score)

N Reference Genome I\
...GCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTCCACAATG...

V

Differences Differences
[GCTTCCAGAATG

* Calculating the allgnlﬁﬁ-‘@ﬁ%%e@%qmres compu%&%ﬁ%ﬁﬁensive
approximate string matclﬁﬁ%’v‘ﬁ—% account for differences between
reads and the reference genome due to:

- Sequencing errors
- Genetic variation

Genome Sequence Analysis

‘I Data Movement from Storage

Alignment
) Computation
Storage Main Unit
System Memory Cache (CPU or
J Accelerator)

x Computation overhead

x Data movement overhead

Traditional Solution: Accelerator

Heuristics Accelerators Filters

§ B

Storage
System

Main
Memory

v
X

Computation overhead

Data movement overhead

Y

Computation
Unit
(CPU or

Accelerator)

Alternate Solution: In-SSD Computation

Y Filter reads that do not require alignment
inside the storage system

AAQCGTTCCTTGGCA| | :
GGGUCAGAATG l _ Compu?atlon

AAICCTTTGGGTCCA Main Cache Unit

[TTITCCCCGGGGCCA Memory (CPUor

| [GCTTCCAGAATG | Accelerator)

Filtered Reads

Exactly-matching reads
Do not need expensive approximate string matching during alignment

Non-matching reads
Do not have potential matching locations and can skip alignment

Key Challenges

Y Filter reads that do not require alignment
inside the storage system

() Computation
Storage Main Unit
System Memory Cache (CPU or

L J Accelerator)

Filtered Reads

Read mapping workloads can exhibit different behavior

There are limited hardware resources
In the storage system

GenStore: In-storage Processing

Y Filter reads that do not require alignment
inside the storage system

Computation
GenStore-Enabled Main Unit
Storage M Cache CPU
System emory (or
Accelerator)
\/ Computation overhead
\/ Data movement overhead

GenStore provides significant speedup (1.4x - 33.6x) and
energy reduction (3.9x - 29.2x) at low cost

Recap

* Modern systems are very heterogeneous
e Require CPU-like virtual memory support

* |Issues with virtual memory design
* Limited TLB reach and high PW latency
* Solution:
* Smart use of huge page
* Accelerate page walk requests
* Decouple metadata from page sizes
* Various workload types, each with different demands
* Integration with accelerators
* Solution: In-memory and In-storage accelerators

62

More Info on the Direction

 Virtual memory design for heterogeneous datacenters

e Ausavarungnirun et al. “Mosaic: A GPU Memory Manager with Application-
Transparent Support for Multiple Page Sizes”, MICRO 2017

e Ausavarungnirun et al. “MASK: Redesigning the GPU Memory Hierarchy to Support
Multi-Application Concurrency”, ASPLOS 2018

e Ausavarungnirun et al. “PRISM: Architectural Support for Variable-granularity
Memory Metadata”, PACT 2020

* Memory management in datacenters

* Lietal. “A Framework for Memory Oversubscription Management in Graphics
Processing Units”, ASPLOS 2019

* Lietal. “Improving Inter-kernel Data Reuse With CTA-Page Coordination in GPGPU”,
ICCAD 2021

e Choi et al. “Memory Harvesting in Multi-GPU Systems with Hierarchical Unified
Virtual Memory”, USENIX ATC 2022

* In-memory and In-storage accelerators for DNA sequencing

* Senol et al. “GenASM: A Low-Power, Memory-Efficient Approximate String Matching
Acceleration Framework for Genome Sequence Analysis”, MICRO 2020

* Ghiasi et al. “GenStore: A High-Performance and Energy-Efficient In-Storage
Computing System for Genome Sequence Analysis”, ASPLOS 2022

High-performance Virtual Memory Design
for Modern Architectures

Rachata Ausavarungnirun
https://rausavar.github.io/

Architecture Research Group
TGGS, KMUTNB

The Sirindhorn International

>0 & i3] O
P‘s‘//‘y 3.2/ oY,

KMUTNB

https://rausavar.github.io/

