
Invertible Sketches for Network

Measurement at Scale

Patrick P. C. Lee

The Chinese University of Hong Kong

1Joint work with Lu Tang (Xiamen University) and Qun Huang (Peking University)

Applied Distributed Systems Lab (ADSLab)

➢Goal: Improve dependability of large-scale computer systems

• Fault tolerance, recovery, security, and performance guarantees that need

to be achieved in order to maintain the correctness and performance of a

computer system

➢Our approach:

• Build prototypes, backed by experiments and theoretical analysis

• Release open-source software

➢http://adslab.cse.cuhk.edu.hk

2

http://adslab.cse.cuhk.edu.hk/

Dependable Storage Stack

3

Encrypted deduplication

Cloud Data center Disk array SSD Memory

Key-value

store

Key-value

store

Key-value

store

Key-value

store

Erasure coding

Network measurement Stream processing

Big data

➢Network measurement is critical for managing networks

• Billing customers

• Detecting anomalies

• Diagnosing and fixing problems

➢Difficulties for network measurement

• Fast line rate

• Huge volume of traffic

• Emerging of programmable network elements

Network Measurement

4

Measurement

Decision Control

Network Measurement at Scale

5

Network management

Network-wide flow statistics

Traffic

distribution

Flow

cardinality

Heavy

hitters

Methodology

➢Network measurement is studied in literature for decades

➢We aim to address specific challenges, in the face of

• High-speed and huge-volume traffic in large-scale networks

• Limited measurement resources on both software and hardware

➢Our approach

• Algorithm design

• Propose sketch-based algorithms to address the challenges

• We focus on invertible sketches

• Invertible: the measurement results can be readily recovered from only the sketch data

structure itself → important for network forensics and distributed measurement

• Deployment on both software and hardware

6

Structure

7

Network Measurement

Heavy flow

detection

MV-Sketch

INFOCOM’19

(AR: 288/1464 = 19.7%)

IEEE/ACM Trans. on

Networking 2020

Superspreader

detection

SpreadSketch

INFOCOM’20

(AR: 268/1354 = 19.8%)

IEEE/ACM Trans. on

Networking, accepted 2022

Outline

➢MV-Sketch: Heavy Flow Detection

➢SpreadSketch: Superspreader Detection

8

Heavy Flow Detection

➢Network traffic: a stream of packets denoted by (𝒙, 𝒗𝒙) pairs

• 𝑥: flow key, e.g., 5-tuple, source IP address

• 𝑣𝑥: value, e.g., 1 for packet counting, payload bytes for size counting

➢Heavy flows – abnormal patterns in network traffic

• Heavy hitters: flows with high traffic volume

• Heavy changers: flows with high change of traffic volume

• Detecting heavy flows in real time is critical for:

• anomaly detection, load balancing, traffic engineering

9

Challenges

➢Fast packet processing

• e.g. 10 Gb/s link: one packet every 67 ns

➢ Limited memory

• Programmable switches: 1-2 MB per stage [Bosshart, SIGCOMM’13]

• Servers: tens of MB of SRAM

• Per-flow tracking is expensive

• e.g., millions of concurrent flows per minute for 10 Gb/s link

• Performance degrades once the working set exceeds the available software cache size

10

Sketches

➢Good:

• High accuracy with small memory

• Fast processing speed

➢Bad: Non-invertible

• Cannot readily return all heavy flows

• e.g., Count-Min needs to enumerate all possible flows in entire flow key

space to recover all heavy flows

11

Packet (𝑥, 𝑣𝑥)

+𝑣𝑥

+𝑣𝑥

+𝑣𝑥

+𝑣𝑥

Each element is a counter

Our Contributions: MV-Sketch

➢MV-Sketch, a fast and compact invertible sketch for heavy flow

detection in network data streams

• Built on Majority Voting [Boyer and Moore, 1991]

• Small and static memory usage

• High processing speed

• High accuracy

➢Theoretical analysis on accuracy, space, and time complexity

➢Experiments on real-world network traces

• Higher accuracy; up to 3.38× throughput gain over state-of-the-arts

• Line-rate measurement with limited resource overhead on hardware

12

Problem Formulation

➢Perform detection at regular time intervals called epochs

➢ Input: packet stream (𝑥, 𝑣𝑥)

➢Heavy hitter: all 𝑥 with 𝑆 𝑥 > 𝜑

• 𝑆 𝑥 : total traffic volume of flow 𝑥 in one epoch

• 𝜑: user-specified threshold

➢Heavy changer: all 𝑥 with 𝐷(𝑥) > 𝜑

• 𝐷(𝑥): total traffic change of flow 𝑥 across two epochs

➢Problem: infer 𝑆 𝑥 and 𝐷 𝑥 in real-time with limited memory

13

Design

➢Key observation: small number of large flows dominate

• e.g., 9% of flows account for 90% of traffic [Fang, 1999]

➢ Idea:

• A heavy flow has more traffic than all other flows in the same bucket with

high probability

• Track a candidate heavy flow in each bucket via majority voting (MJRTY)
[Boyer and Moore, 1991]

• Theorem: MJRTY ensures that the true majority vote (with over half of total

vote counts) must be tracked

14

Design

➢Data structure: 𝑟 × 𝑤 table of buckets

15

𝑉𝑖,𝑗 𝐾𝑖,𝑗 𝐶𝑖,𝑗

Total sum Flow key Indicator

𝑟 rows

𝑤 buckets

Bucket 𝐵(𝑖, 𝑗)

Update

➢ Insert a packet (𝑥, 𝑣𝑥) into the sketch

• Map 𝑥 to one bucket per row

• Increment 𝑉 with 𝑣𝑥
• Compare 𝑥 with 𝐾

• Case1: 𝐾 = 𝑥, increment 𝐶 with 𝑣𝑥

16

Packet (1101,19)

80 1101 20

Total sum Flow key Indicator

Before After

99 1101 39

Total sum Flow key Indicator

Update

➢ Insert a packet (𝑥, 𝑣𝑥) into the sketch

• Map 𝑥 to one bucket per row

• Increment 𝑉 with 𝑣𝑥
• Compare 𝑥 with 𝐾

• Case1: 𝐾 = 𝑥, increment 𝐶 with 𝑣𝑥
• Case2: 𝐾 ≠ 𝑥, decrement 𝐶 with 𝑣𝑥

17

Packet (1101,19)

80 1101 20

Total sum Flow key Indicator

Before After

99 1101 39

Total sum Flow key Indicator

75 0110 25

Total sum Flow key Indicator

Before After

94 0110 6

Total sum Flow key Indicator

Update

➢ Insert a packet (𝑥, 𝑣𝑥) into the sketch

• Map 𝑥 to one bucket per row

• Increment 𝑉 with 𝑣𝑥
• Compare 𝑥 with 𝐾

• Case1: 𝐾 = 𝑥, increment 𝐶 with 𝑣𝑥
• Case2: 𝐾 ≠ 𝑥, decrement 𝐶 with 𝑣𝑥

• if 𝑪 < 𝟎, copy 𝒙 to 𝑲, 𝑪 = 𝒂𝒃𝒔(𝑪)

18

Packet (1101,19)

80 1101 20

Total sum Flow key Indicator

Before After

99 1101 39

Total sum Flow key Indicator

75 0110 25

Total sum Flow key Indicator

Before After

94 0110 6

Total sum Flow key Indicator

75 0110 5

Total sum Flow key Indicator

Before After

94 1101 14

Total sum Flow key Indicator

Query

➢Returns the estimated sum of a given flow

19

Query flow: 1101

90 1101 10

Total sum Flow key Indicator

120 0011 6

100 1101 2

210 0101 90

𝑒𝑠𝑡1=
90+10

2
= 50

𝑒𝑠𝑡2=
120−6

2
= 57

𝑒𝑠𝑡3=
100+2

2
= 51

𝑒𝑠𝑡4=
210−90

2
= 60

𝑒𝑠𝑡(1101) = 𝐌𝐢𝐧 (50, 57, 51, 60) = 50

Identify Heavy Hitters

➢ Idea: consider keys tracked by buckets

• Enumerate all buckets

• Report 𝐾𝑖,𝑗 as a heavy hitter if its estimation exceeds threshold

20

𝐵𝑢𝑐𝑘𝑒𝑡 𝐵(𝑖, 𝑗)
𝑉𝑖,𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ?

Get the sum estimation of 𝐾𝑖,𝑗

Identify Heavy Changers

➢ Idea: use estimated maximum change

➢Get upper and lower bounds of 𝑥 in one sketch:

• Upper bound U(𝑥) : estimated sum of 𝑥

• Lower bound 𝐿(𝑥): check each hashed bucket 𝐵(𝑖, 𝑗)

• 𝐿𝑖,𝑗(𝑥) = ൝
𝐶𝑖,𝑗 , 𝑖𝑓 𝐾𝑖,𝑗 = 𝑥

0 , 𝑖𝑓 𝐾𝑖,𝑗 ≠ 𝑥
, 𝐿(𝑥) = Max{𝐿𝑖,𝑗(𝑥)}

➢Estimate maximum change: ෡𝐷 𝑥 = max{|𝑈1 𝑥 − 𝐿2(𝑥)|, |𝐿1 𝑥 − 𝑈2(𝑥)|}

21

MV-Sketch at 1st epoch

𝑈1 𝑥 and 𝐿1 𝑥

MV-Sketch at 2nd epoch

𝑈2 𝑥 and 𝐿2 𝑥

Extension

➢Architecture: 𝒒 > 1 monitoring nodes and a centralized controller

➢MV-Sketch supports both scalable and network-wide detection

• Scalable detection: improve the performance and scalability by performing

heavy flow detection on multiple packet streams in parallel

• Network-wide detection: provide an accurate network-wide measurement view

as if all traffic were measured in one big detector

22

MV-Sketch

MV-Sketch MV-Sketch

Controller

Theoretical Analysis

23

➢On accuracy

• Bounded estimate errors

• Small false negative rate (almost zero false negatives in our evaluation)

➢On complexity

• Let 𝑟 = 𝑙𝑜𝑔
1

𝛿
, 𝑤 =

2

𝜀
, 𝑟 and 𝑤 are numbers of rows and columns resp.

• Space complexity: Ο (r × 𝑤 × log 𝑛), 𝑛 is flow key space

• Per-packet update time complexity: Ο 𝑟
• Better than existing invertible sketches

Software Evaluation Setup

➢Traces:

• CAIDA16 1-hour trace, we focus on the first five minutes

• Epoch length: 1 minute

• Each epoch: ~29M packets, ~1M flows on average

➢Approach:

• Compare with Count-Min-Heap, LD-Sketch, Deltoid, Fast Sketch

• Flow key: 64 bit (source/destination address pairs)

➢Metric:

• Accuracy: precision, recall, relative error

• Speed: throughput (pkts/s)

24

Evaluation on Software - Accuracy

➢Heavy hitter detection

25

➢ MV-Sketch has highest

accuracy

➢ Reduce relative error by 55%

and 87% over LD-Sketch and

Count-Min-Heap, resp.

Evaluation on Software - Accuracy

➢Heavy changer detection

26

➢ MV-Sketch has recall 1 in all

cases except 64KB

➢ MV-Sketch has lower

precision than CMH for small

memory

Evaluation on Software - Speed

27

➢ MV-Sketch achieves up to 3.38X throughput gain

➢ With SIMD, MV-Sketch’s throughput further improves by 75%

Hardware Evaluation Setup

➢Testbed:

• Two servers that each has two 12-core 2.2GHz CPUs, 32 GB RAM, and a

40 Gbps NIC

• A Barefoot Tofino switch with 32 100 Gb ports

➢Approach:

• Compare with PRECISION, which is designed for heavy hitter detection in

programmable switches

➢Metric:

• Resource usage: memory and computation resource usage

• Speed: throughput (pkts/s)

28

Evaluation on Hardware

29

• All the MV-Sketch implementations achieve less resource usage

Switch resource usage (percentages in brackets are fractions of total resource usage)

➢Throughput

• Both MV-Sketch and PRECISION achieve line-rate measurement

➢Resource usage

Summary

➢MV-Sketch, an invertible sketch that enables fast and accurate

heavy flow detection in network data streams

➢Contributions:

• Propose a new sketch design for invertible sketches

• High accuracy with small and static memory

• Fast processing speed

• Extensions to distributed heavy flow detection

• Extensive experiments on real-world traces

➢Source code:

• http://adslab.cse.cuhk.edu.hk/software/mvsketch

30

http://adslab.cse.cuhk.edu.hk/software/mvsketch/

Outline

➢MV-Sketch: Heavy Flow Detection

➢SpreadSketch: Superspreader Detection

31

Superspreader Detection

➢Network traffic: a stream of packets denoted by (𝑥, 𝑦) pairs

• 𝑥: one or more source fields in the packet header

• e.g. 𝑥 = (𝑆𝑟𝑐𝐼𝑃) or (𝑆𝑟𝑐𝐼𝑃, 𝑆𝑟𝑐𝑃𝑜𝑟𝑡)

• 𝑦: one or more destination fields in the header

➢Fan-out of 𝑥: 𝑆 𝑥 = #(distinct y) 𝑥 connects to

➢Superspreaders: sources with large fan-outs

• Same definition applies to destinations

➢Detecting superspreaders in real time is critical to find

➢ DDoS attacks, port scanning, hot-spots

32

Our Contributions: SpreadSketch

➢SpreadSketch, a fast and invertible sketch for network-wide

superspreader detection in network data streams

• Fast and invertible

• High processing speed, fast recovery of superspreaders

• Compact: small and static memory usage

• Network-wide: network-wide view of superspreaders

➢Theoretical analysis on accuracy, space, and time complexity

➢Extensive experiments on real-world network traces

• Higher accuracy and performance over state-of-the-art sketches

• Feasibility on a Barefoot Tofino switch with resource efficiency

33

Design – Main Idea

➢Track the source in each bucket that dominates the bucket’s spread

➢Find the source with highest spread by tracking highest level value

➢Replace integer counters in sketch with distinct counters

• Enable distinct counting in sketch using multiresolution bitmap [Estan, IMC’03]

• Apply bitwise-AND operation across bitmaps for count estimation

34

Design – Data Structure

➢Data structure: 𝑟 × 𝑤 table of buckets

35

𝑉𝑖,𝑗 𝐾𝑖,𝑗 𝐿𝑖,𝑗

Spread Flow key Level

𝑟 rows

𝑤 buckets

Bucket 𝐵(𝑖, 𝑗)

• 𝑉𝑖,𝑗 : Distinct counter to track the total spread in the bucket

• 𝐾𝑖,𝑗 : the candidate source key with the highest level in the bucket

• 𝐿𝑖,𝑗, the maximum level seen in the bucket

Result – Accuracy CAIDA19

36

• SpreadSketch is more robust

and accurate compared with

state-of-the-art sketches

• Similar observations on

CAIDA18 and CAIDA16 traces

Result – Speed

37

➢ SpreadSketch (SS) achieves throughput more

than 22 MPPS

• it is easily catch up with10 Gbs line speed

➢ SpreadSketch recovers superspreaders within

few milliseconds

Overall, SpreadSketch achieves both high update

and recovery speed

Summary

➢SpreadSketch, an invertible sketch that enables fast and accurate

network-wide superspreader detections in network data streams

➢Contributions:

• Propose a new invertible sketch design to detect superspreaders

• High accuracy and robust on real-word traces

• Fast processing and recovery speed

• Feasibility on commodity hardware switches

• Detailed theoretical analysis on both accuracy and complexities

• Extensive experiments on real-world traces

➢Source code: http://adslab.cse.cuhk.edu.hk/software/spreadsketch/

38

http://adslab.cse.cuhk.edu.hk/software/spreadsketch/

Thank you!

&

Questions?

39

