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Applied Distributed Systems Lab (ADSLab)

➢Goal: Improve dependability of large-scale computer systems

• Fault tolerance, recovery, security, and performance guarantees that need 

to be achieved in order to maintain the correctness and performance of a 

computer system

➢Our approach:

• Build prototypes, backed by experiments and theoretical analysis

• Release open-source software

➢http://adslab.cse.cuhk.edu.hk
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http://adslab.cse.cuhk.edu.hk/


Dependable Storage Stack
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➢Network measurement is critical for managing networks

• Billing customers

• Detecting anomalies

• Diagnosing and fixing problems

➢Difficulties for network measurement 

• Fast line rate

• Huge volume of traffic 

• Emerging of programmable network elements

Network Measurement
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Network Measurement at Scale
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Methodology

➢Network measurement is studied in literature for decades

➢We aim to address specific challenges, in the face of

• High-speed and huge-volume traffic in large-scale networks

• Limited measurement resources on both software and hardware

➢Our approach

• Algorithm design

• Propose sketch-based algorithms to address the challenges

• We focus on invertible sketches

• Invertible: the measurement results can be readily recovered from only the sketch data 

structure itself → important for network forensics and distributed measurement

• Deployment on both software and hardware
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Structure
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Outline

➢MV-Sketch: Heavy Flow Detection

➢SpreadSketch: Superspreader Detection
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Heavy Flow Detection

➢Network traffic: a stream of packets denoted by (𝒙, 𝒗𝒙) pairs

• 𝑥: flow key, e.g., 5-tuple, source IP address

• 𝑣𝑥: value, e.g., 1 for packet counting, payload bytes for size counting

➢Heavy flows – abnormal patterns in network traffic

• Heavy hitters: flows with high traffic volume

• Heavy changers: flows with high change of traffic volume 

• Detecting heavy flows in real time is critical for:

• anomaly detection, load balancing, traffic engineering
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Challenges

➢Fast packet processing

• e.g. 10 Gb/s link: one packet every 67 ns 

➢ Limited memory

• Programmable switches: 1-2 MB per stage [Bosshart, SIGCOMM’13]

• Servers: tens of MB of SRAM

• Per-flow tracking is expensive 

• e.g., millions of concurrent flows per minute for 10 Gb/s link

• Performance degrades once the working set exceeds the available software cache size
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Sketches

➢Good: 

• High accuracy with small memory

• Fast processing speed

➢Bad: Non-invertible

• Cannot readily return all heavy flows

• e.g., Count-Min needs to enumerate all possible flows in entire flow key 

space to recover all heavy flows
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Packet (𝑥, 𝑣𝑥)
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Our Contributions: MV-Sketch

➢MV-Sketch, a fast and compact invertible sketch for heavy flow 

detection in network data streams

• Built on Majority Voting [Boyer and Moore, 1991]

• Small and static memory usage

• High processing speed

• High accuracy

➢Theoretical analysis on accuracy, space, and time complexity

➢Experiments on real-world network traces

• Higher accuracy; up to 3.38× throughput gain over state-of-the-arts

• Line-rate measurement with limited resource overhead on hardware
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Problem Formulation

➢Perform detection at regular time intervals called epochs

➢ Input: packet stream (𝑥, 𝑣𝑥)

➢Heavy hitter: all 𝑥 with 𝑆 𝑥 > 𝜑

• 𝑆 𝑥 : total traffic volume of flow 𝑥 in one epoch

• 𝜑: user-specified threshold

➢Heavy changer: all 𝑥 with 𝐷(𝑥) > 𝜑

• 𝐷(𝑥): total traffic change of flow 𝑥 across two epochs 

➢Problem: infer 𝑆 𝑥 and 𝐷 𝑥 in real-time with limited memory 
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Design

➢Key observation: small number of large flows dominate

• e.g., 9% of flows account for 90% of traffic [Fang, 1999]

➢ Idea: 

• A heavy flow has more traffic than all other flows in the same bucket with 

high probability

• Track a candidate heavy flow in each bucket via majority voting (MJRTY)
[Boyer and Moore, 1991]

• Theorem: MJRTY ensures that the true majority vote (with over half of total 

vote counts) must be tracked 
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Design

➢Data structure: 𝑟 × 𝑤 table of buckets
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𝑉𝑖,𝑗 𝐾𝑖,𝑗 𝐶𝑖,𝑗

Total sum Flow key Indicator

𝑟 rows

𝑤 buckets

Bucket 𝐵(𝑖, 𝑗)



Update

➢ Insert a packet (𝑥, 𝑣𝑥) into the sketch

• Map 𝑥 to one bucket per row

• Increment 𝑉 with 𝑣𝑥
• Compare 𝑥 with 𝐾

• Case1: 𝐾 = 𝑥, increment 𝐶 with 𝑣𝑥
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Update

➢ Insert a packet (𝑥, 𝑣𝑥) into the sketch

• Map 𝑥 to one bucket per row

• Increment 𝑉 with 𝑣𝑥
• Compare 𝑥 with 𝐾

• Case1: 𝐾 = 𝑥, increment 𝐶 with 𝑣𝑥
• Case2: 𝐾 ≠ 𝑥, decrement 𝐶 with 𝑣𝑥
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Update

➢ Insert a packet (𝑥, 𝑣𝑥) into the sketch

• Map 𝑥 to one bucket per row

• Increment 𝑉 with 𝑣𝑥
• Compare 𝑥 with 𝐾

• Case1: 𝐾 = 𝑥, increment 𝐶 with 𝑣𝑥
• Case2: 𝐾 ≠ 𝑥, decrement 𝐶 with 𝑣𝑥

• if 𝑪 < 𝟎, copy 𝒙 to 𝑲, 𝑪 = 𝒂𝒃𝒔(𝑪)
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Packet (1101,19)
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Total sum Flow key Indicator
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Query

➢Returns the estimated sum of a given flow
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Query flow: 1101

90 1101 10

Total sum Flow key Indicator

120 0011 6

100 1101 2

210 0101 90

𝑒𝑠𝑡1=
90+10

2
= 50

𝑒𝑠𝑡2=
120−6

2
= 57

𝑒𝑠𝑡3=
100+2

2
= 51

𝑒𝑠𝑡4=
210−90

2
= 60

𝑒𝑠𝑡(1101) = 𝐌𝐢𝐧 (50, 57, 51, 60) = 50



Identify Heavy Hitters

➢ Idea: consider keys tracked by buckets

• Enumerate all buckets

• Report 𝐾𝑖,𝑗 as a heavy hitter if its estimation exceeds threshold
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𝐵𝑢𝑐𝑘𝑒𝑡 𝐵(𝑖, 𝑗)
𝑉𝑖,𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ?

Get the sum estimation of 𝐾𝑖,𝑗



Identify Heavy Changers

➢ Idea: use estimated maximum change 

➢Get upper and lower bounds of 𝑥 in one sketch: 

• Upper bound U(𝑥) : estimated sum of 𝑥

• Lower bound 𝐿(𝑥):  check each hashed bucket 𝐵(𝑖, 𝑗)

• 𝐿𝑖,𝑗(𝑥) = ൝
𝐶𝑖,𝑗 , 𝑖𝑓 𝐾𝑖,𝑗 = 𝑥

0 , 𝑖𝑓 𝐾𝑖,𝑗 ≠ 𝑥
,  𝐿(𝑥) = Max{𝐿𝑖,𝑗(𝑥)}

➢Estimate maximum change:  ෡𝐷 𝑥 = max{|𝑈1 𝑥 − 𝐿2(𝑥)|, |𝐿1 𝑥 − 𝑈2(𝑥)|}
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MV-Sketch at 1st epoch

𝑈1 𝑥 and 𝐿1 𝑥

MV-Sketch at 2nd epoch

𝑈2 𝑥 and 𝐿2 𝑥



Extension

➢Architecture: 𝒒 > 1 monitoring nodes and a centralized controller

➢MV-Sketch supports both scalable and network-wide detection

• Scalable detection: improve the performance and scalability by performing 

heavy flow detection on multiple packet streams in parallel 

• Network-wide detection: provide an accurate network-wide measurement view 

as if all traffic were measured in one big detector 
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Theoretical Analysis
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➢On accuracy

• Bounded estimate errors

• Small false negative rate (almost zero false negatives in our evaluation)

➢On complexity

• Let 𝑟 = 𝑙𝑜𝑔
1

𝛿
, 𝑤 =

2

𝜀
, 𝑟 and 𝑤 are numbers of rows and columns resp.

• Space complexity: Ο (r × 𝑤 × log 𝑛), 𝑛 is flow key space

• Per-packet update time complexity: Ο 𝑟
• Better than existing invertible sketches



Software Evaluation Setup

➢Traces: 

• CAIDA16 1-hour trace, we focus on the first five minutes

• Epoch length: 1 minute 

• Each epoch: ~29M packets, ~1M flows on average 

➢Approach: 

• Compare with Count-Min-Heap, LD-Sketch, Deltoid, Fast Sketch

• Flow key: 64 bit (source/destination address pairs)

➢Metric:

• Accuracy: precision, recall, relative error

• Speed: throughput (pkts/s)
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Evaluation on Software - Accuracy

➢Heavy hitter detection
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➢ MV-Sketch has highest 

accuracy 

➢ Reduce relative error by 55% 

and 87% over LD-Sketch and 

Count-Min-Heap, resp.



Evaluation on Software - Accuracy

➢Heavy changer detection
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➢ MV-Sketch has recall 1 in all 

cases except 64KB

➢ MV-Sketch has lower 

precision than CMH for small 

memory



Evaluation on Software - Speed
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➢ MV-Sketch achieves up to 3.38X throughput gain

➢ With SIMD, MV-Sketch’s throughput further improves by 75%



Hardware Evaluation Setup

➢Testbed: 

• Two servers that each has two 12-core 2.2GHz CPUs, 32 GB RAM, and a 

40 Gbps NIC 

• A Barefoot Tofino switch with 32 100 Gb ports

➢Approach: 

• Compare with PRECISION, which is designed for heavy hitter detection in 

programmable switches 

➢Metric:

• Resource usage: memory and computation resource usage

• Speed: throughput (pkts/s)
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Evaluation on Hardware
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• All the MV-Sketch implementations achieve less resource usage

Switch resource usage (percentages in brackets are fractions of total resource usage)

➢Throughput

• Both MV-Sketch and PRECISION achieve line-rate measurement

➢Resource usage



Summary

➢MV-Sketch, an invertible sketch that enables fast and accurate 

heavy flow detection in network data streams 

➢Contributions:

• Propose a new sketch design for invertible sketches

• High accuracy with small and static memory

• Fast processing speed

• Extensions to distributed heavy flow detection

• Extensive experiments on real-world traces 

➢Source code:

• http://adslab.cse.cuhk.edu.hk/software/mvsketch
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http://adslab.cse.cuhk.edu.hk/software/mvsketch/


Outline

➢MV-Sketch: Heavy Flow Detection

➢SpreadSketch: Superspreader Detection
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Superspreader Detection

➢Network traffic: a stream of packets denoted by (𝑥, 𝑦) pairs

• 𝑥: one or more source fields in the packet header

• e.g. 𝑥 = (𝑆𝑟𝑐𝐼𝑃) or (𝑆𝑟𝑐𝐼𝑃, 𝑆𝑟𝑐𝑃𝑜𝑟𝑡)

• 𝑦: one or more destination fields in the header

➢Fan-out of 𝑥: 𝑆 𝑥 = #(distinct y) 𝑥 connects to

➢Superspreaders: sources with large fan-outs

• Same definition applies to destinations  

➢Detecting superspreaders in real time is critical to find

➢ DDoS attacks, port scanning, hot-spots
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Our Contributions: SpreadSketch

➢SpreadSketch, a fast and invertible sketch for network-wide 

superspreader detection in network data streams

• Fast and invertible

• High processing speed, fast recovery of superspreaders

• Compact: small and static memory usage

• Network-wide: network-wide view of superspreaders

➢Theoretical analysis on accuracy, space, and time complexity

➢Extensive experiments on real-world network traces

• Higher accuracy and performance over state-of-the-art sketches 

• Feasibility on a Barefoot Tofino switch with resource efficiency
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Design – Main Idea

➢Track the source in each bucket that dominates the bucket’s spread

➢Find the source with highest spread by tracking highest level value

➢Replace integer counters in sketch with distinct counters

• Enable distinct counting in sketch using multiresolution bitmap [Estan, IMC’03] 

• Apply bitwise-AND operation across bitmaps for count estimation
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Design – Data Structure

➢Data structure: 𝑟 × 𝑤 table of buckets
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𝑉𝑖,𝑗 𝐾𝑖,𝑗 𝐿𝑖,𝑗

Spread Flow key Level

𝑟 rows

𝑤 buckets

Bucket 𝐵(𝑖, 𝑗)

• 𝑉𝑖,𝑗 : Distinct counter to track the total spread in the bucket

• 𝐾𝑖,𝑗 : the candidate source key with the highest level in the bucket

• 𝐿𝑖,𝑗, the maximum level seen in the bucket



Result – Accuracy CAIDA19
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• SpreadSketch is more robust 

and accurate compared with 

state-of-the-art sketches

• Similar observations on 

CAIDA18 and CAIDA16 traces



Result – Speed
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➢ SpreadSketch (SS) achieves throughput more 

than 22 MPPS

• it is easily catch up with10 Gbs line speed

➢ SpreadSketch recovers superspreaders within 

few milliseconds

Overall, SpreadSketch achieves both high update 

and recovery speed



Summary

➢SpreadSketch, an invertible sketch that enables fast and accurate 

network-wide superspreader detections in network data streams 

➢Contributions:

• Propose a new invertible sketch design to detect superspreaders

• High accuracy and robust on real-word traces

• Fast processing and recovery speed

• Feasibility on commodity hardware switches

• Detailed theoretical analysis on both accuracy and complexities

• Extensive experiments on real-world traces

➢Source code: http://adslab.cse.cuhk.edu.hk/software/spreadsketch/
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http://adslab.cse.cuhk.edu.hk/software/spreadsketch/


Thank you!

&

Questions?
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