
Erasure Codes in Data Centers

数据中心高可靠纠删码技术

沈志荣 厦门大学

1

Introduction

➢Data volume is growing explosively

• Failures arise unexpectedly yet prevalently

• Fault tolerance is critical

Monetary loss caused by failures
Commercial providers accounted for

72% of outages in 2020
2

Two Redundancy Techniques

➢ Replication: directly keep multiple copies across different nodes

• Triple replication requires 3x of storage redundancy

• Tolerate n-1 failures in n-replication

A

A A A

Proxy

➢ Erasure coding: introduce slightly computational operations
• Lower storage overhead with the same reliability guarantee as replication

• Deployed in Google, Facebook, etc.

3

Erasure Coding

➢Divide a data file to k data chunks

➢Encode k chunks to another redundant m parity chunks

➢Distribute k+m chunks (forming a stripe) across k+m nodes

➢Tolerate any m nodes failures

File
A

B

A

B

A+B

A+2B
Encode

Decode

A

B

A+2B B= - 2*

4

Erasure Coding

1960s

Reed-Solomon
Codes

Computation
efficiency

EC is deployed in
storage systems

Update
performance

2007

EC is deployed in
distributed systems

Repair traffic

2013

New variants of EC

Computation-traffic tradeoff (Rege. codes)
Storage-traffic tradeoff (LRCs)

1990

EC is deployed in
commodity storage

Storage-efficiency、portability

Cross-cluster transmission

Now

5

Shortcomings of EC

➢Erasure coding reduces storage overhead at the expense of I/O

amplification in both repair and update

• Repairing a single chunk needs k surviving chunks

• Updates a data chunk calls for the recalculation of m parity chunks

A

B

A+B

A+2B Decode

A

B

Amplify repair
traffic

A

B

A+B

A+2B

A’+B

A’+2B

A’

Amplify update
traffic

6

Our Works

➢ In this talk, I will introduce our recent studies

• Boosting Full-Node Repair in Erasure-Coded Storage [USENIX ATC’21]

• Optimal Rack-Coordinated Updates in Erasure-Coded Data Centers

[INFOCOM’21]

A repair-scheduling framework that boosts full-node repair for a

variety of erasure codes and repair algorithms

An update approach that minimizes the cross-rack update traffic in

erasure-coded data centers

7

Erasure Coding

➢Drawback: substantial repair traffic

• Retrieve k chunks to repair a single failed chunk

➢Relieve the I/O amplification problem in repair

• Repair-efficient codes with reduced repair traffic (What to retrieve?)

• Locally Repairable Codes [ATC’12, PVLDB’13]

• Regenerating Codes [TIT’10, TIT’11]

• Efficient repair algorithms to parallelize the repair process (How to retrieve?)

• Partial-Parallel-Repair (PPR) [EuroSys’16]

• Repair pipelining (ECPipe) [ATC’17]

8

Repair-Efficient Codes

➢ Locally Repairable Codes (LRCs)

• Generate local parity chunks to facilitate repair at the expense of

additional storage cost

D1 D2 D3 D4 P5 P6

L1 L2

Group 1 Group 2

D1 D2

L1

Group 1

D1

Retrieve two chunks

for repair

(k, l, m) = (4, 2, 2)

9

Repair Algorithms

➢Single-chunk repair algorithm

• Accelerate the repair without reducing the repair traffic

• Introduce transmission dependency

Conventional Repair (CR) Partial-Parallel-Repair (PPR)

Repair time : 4 timeslots Repair time : 𝑙𝑜𝑔2 4 + 1 = 3 timeslots

T1: N3 → N2, N5 → N4

T2: N4 → N2

T3: N2 → N1

D2 D3 D4 P5

Switch

N5
N4N3N2N1

D1

Congestion

D1

D4 P5

I2

❶
❶

❷
❸

Switch

D3D2

I1

N5N4N3N2N1

Introduce transmission dependency:

D4 should wait for P5 for aggregation

☺

10

Motivation

➢Limitation 1: Failing to utilize the full duplex transmission

(a) Unbalanced repair solutions (b) Balanced repair solutions

The repair time is determined by the most loaded node

N5N4N3N2N1

Upload 1 1 2 2

Download 0 4 0 2

Upload 1 1 2 2

Download 2 2 0 2

N5N4N3N2N1

Two chunks’ repair under the conventional repair (CR)

11

Motivation

➢Limitation 2: Failing to fully utilize the bandwidth at each timeslot

(a) Repair using four timeslots (b) Repair using three timeslots

Transmission scheduling affects bandwidth utilization

❶ ❶

❷
❷

N5N4N3N2N1

❸

C7

C2 C4 C3

C5C6

❶ ❶

❸❷

❸
N5N4N3N2N1

C3

C7

C2 C4

❷
C5C6

Two chunks’ repair under the partial-parallel-repair (PPR)

12

Our Contributions

➢RepairBoost: a framework to speed up the full-node repair

• Tech#1: Repair abstraction (for generality and flexibility)

• Tech#2: Repair traffic balancing (for load balancing)

• Tech#3: Transmission scheduling (for saturating bandwidth utilization)

➢A prototype RepairBoost integrated with HDFS

➢Tackle multiple node failures and facilitate the repair in

heterogeneous environments

➢Experiments on Amazon EC2

• Increase the repair throughput by 35.0-97.1%

13

Repair Abstraction

➢Formalize a single-chunk repair through a repair directed acyclic

graph (RDAG)

• Characterize the data routing over the network and the dependencies

among the requested chunks

• e.g., for RS(k, m), k+1 vertices

• v1, v2, ⋯ , vk : k nodes that retrieve chunks

• vk+1 : destination node for repairing the lost chunk

• Directed edges represent the data routing directions specified in repair

algorithms
V1 V3

V2 V4

V5

An RDAG of PPR

when k=4

① V3 is a child of V4

② V4 should collect all its children before

sending its data to its parent (i.e., V5)

14

Repair Abstraction

➢Repair process guided by RDAG

• The repair starts from the leaf vertices (without predecessor dependency)

• As the repair proceeds, iteratively remove edges and vertices from an RDAG

Leaf vertices

❶
V1 → V2

V3 → V4

V2 V4

V5

Update

❷

V4

V5

Update

V2 → V4

❸

V5

Update

V4 → V5

Finish

V1 V3

V2 V4

V5

V3V1

V2 V4

15

Repair Traffic Balancing

➢Decompose RDAGs into vertices (with different upload and

download traffics) and map the vertices to storage nodes

• Ob#1: Retaining fault tolerance degree

• Ob#2: Balance the upload and download repair traffic

➢The vertices of RDAGs are classified and given different priorities

according to degree

• Intermediate vertices (𝑢 = 1 and 𝑑 > 0)

• Root vertex (𝑢 = 0 and 𝑑 > 0)

• Leaf vertices (𝑢 > 0 and 𝑑 = 0)

16

Repair Traffic Balancing

Vertex of an RDAG

Nodes with

surviving chunks

(10,15) (9, 23) (19,14) (17,20) (17,13) (17,20) Before mapping(uN, dN)

➢Example of mapping vertices of an RDAG to nodes

V1 V3

V2 V4

V5

V2 (1,1)
Decompose

V1 (1,0)

V3 (1,0)

V4 (1,2)

V5 (0,1)

❶

N5N4N3N2N1 N6

Map vertices

to nodes❷

V1V3 V2 V4V5

N2

N3

N1

N5

N4

Data routing

among nodes

❸

17

Transmission Scheduling
➢ The bandwidth may not be utilized at each timeslot during repair (Limitation 2)

➢ Formulate as a maxflow problem

• 2n+2 vertices

• n senders: potentially send data for repair

• n receivers: potentially receive data at the same time

• Establish the connection between senders and receivers according to the RDAGs

N5N4N2N1

N5N4N3N2N1

s

t

N3

Sender

Receiver

n = 5
18

Transmission Scheduling

➢Example of repairing two chunks among five surviving nodes

x Construct a new network

N2

N3

N1

N5

N4

N4

N3

N2

N1

N5

RDAG of

Chunk 1
RDAG of

Chunk 2

N5N4N2N1

N5N4N3N2N1

s

t

N3

❶ Sender

ReceiverN5N4N2N1

N5N4N3N2N1

s

t

N3

Sender

Receiver

❷

N2

N3 N5

N4

N3 N1

N5

❸

RDAG of

Chunk 1

RDAG of

Chunk 2

N3

N5N4N3N2N1

s

t

N5N4N2N1

Sender

Receiver

19

Implementation

➢RepairBoost serves as an independent middleware running atop

existing storage

• The coordinator manages the metadata of stripes

• The agents are standby to wait for the repair commands and perform the

repair operations cooperatively

Agent

Metadata Server

Coordinator

❶

❷

Node

Agent

Node

Agent

Node

Agent

Node

Read (Local)
Recv (Sour.)
Decode
Send (Dest.)
Write (Local)

Agent

❷❷

❶

Coordinator

Calculate (Solu.)
Interact (Agents)

Command Repair traffic

20

Evaluation Setup

➢Amazon EC2

• 17 m5.large machines (1 coordinator and 16 agents)

➢Default configurations

• Chunk size: 64MB, Packet size: 1MB

• RS(6, 3)

➢Single-chunk repair algorithms

• Conventional repair (CR)

• Partial-Parallel-Repair (PPR)

• Repair pipelining (ECPipe)

➢Baseline: random selection

➢ Metric: repair throughput (size of data repaired per time unit) 21

Performance Results
Baseline RepairBoost

0

50

100

150

200

CR PPR ECPipe

Repair Algorithm

T
h
p

t
(M

B
/s

)

0

100

200

300

CR PPR ECPipe

Repair Algorithm

T
h
p

t
(M

B
/s

)

0

100

200

300

400

CR

Repair Algorithm

T
h
p

t
(M

B
/s

)

(a) RS(6,3) (b) LRC(6,2,2) (c) Butterfly(4,2)

➢ Ob#1: Butterfly(4,2) reaches the highest repair throughput

• as it needs to fetch only half of the data

➢ Ob#2: RepairBoost can improve the repair throughput by an average of 60.4% for

different erasure codes
22

Multi-Node Repair

➢ Ob#1: RepairBoost improves the repair throughput by 39.5% (a single node

failure) and by 35.7% (triple node failures)

➢ Ob#2: The repair throughput of RepairBoost drops slightly when more nodes fail

• Fewer selected nodes can participate in the repair
23

Conclusion

➢RepairBoost, a scheduling framework that boosts the full-node

repair for various erasure codes and repair algorithms

• Employ graph abstraction for single-chunk repair

• Balance the upload and download repair traffic

• Schedule the transmission of chunks to saturate unoccupied bandwidths

➢Source code:

https://github.com/shenzr/repairboost-code

24

https://github.com/shenzr/repairboost-code
https://github.com/shenzr/repairboost-code

Our Works

➢ In this talk, I will introduce our recent studies

• Boosting Full-Node Repair in Erasure-Coded Storage [USENIX ATC’21]

• Optimal Rack-Coordinated Updates in Erasure-Coded Data Centers

[INFOCOM’21]

A repair-scheduling framework that boosts full-node repair for a

variety of erasure codes and repair algorithms

An update approach that minimizes the cross-rack update traffic in

erasure-coded data centers

25

Data Center

➢Hierarchical architecture results in the bandwidth diversity

phenomenon

Network

Core

Rack Rack Rack

`

Rack

Chunk

Node

Cross-rack bandwidth a small

fraction of the intra-rack

bandwidth

26

Parity Update

• Each parity chunk 𝑃𝑗 can be calculated as:

• When data chunk 𝐷ℎ is update to 𝐷ℎ
′ each parity chunk could be

update as:

,
1

k

j i j i
i

P D

=

=

' '
, ,()j j h j h h j h j hP P D D P D = + − = +

D1

D2
D1+D2

D1

D2

D1’

D1’+D2 D1+D2 + D1’-D1= data delta chunk parity delta chunk
27

Parity Update

• Selective parity update: data-delta-based update and parity-
delta-based update

Data-delta-based update

Rx Ry

Parity-delta-based update

Rx Ry

'
,j j h j h j jP P D P P= + = +

When the updated data chunks in Rx

is fewer than the parity chunks in Ry

When the updated data chunks in Rx is

no fewer than the parity chunks in Ry
28

Our Contribution

• RackCU: an optimal Rack-Coordinated Update solution that
reaches the lower bound of the cross-rack update traffic

• Breaks the whole parity update procedure into a delta-collecting phase
and another selective parity update phase

• Reliability: allow racks to update parity chunks immediately after data
chunks are updated

• Large-scale simulation, and Alibaba Cloud ECS experiments
• Show that RackCU reduces 22.1%-75.1% of cross-rack update traffic

and hence increases 34.2%-292.6% of update throughput

29

RackCU Design

• Delta-collecting phase: select collector racks and each collector
is responsible for retrieving data delta chunks from the specified
data racks

2

R1 R2 R3 R4
R5

2

ΔD1 ΔD2 ΔD3 ΔD4 ΔD5 ΔD6 P1 P2 P3 P4

30

RackCU Design

• Selective parity update phase: collector rack choose either the
data-delta-based update or the parity-delta-based update to
renew the parity chunks

2

R1 R2 R3 R4
R5

2ΔD1 ΔD2 ΔD3 ΔD4 ΔD5 ΔD6 P1 P2 P3 P4

ΔD1 ΔD2 ΔD5 ΔD6

2

Needs 10 chunks transmitted across racks

31

RackCU Design

• Optimal rack-coordinated update: select the rack with the most
chunks as collector rack to minimize cross-rack traffic

• We provide a theoretical proof to demonstrate RackCU
minimizes the cross-rack update traffic

2

R1 R2 R3 R4
R5

2

ΔD1 ΔD2 ΔD3 ΔD4 ΔD5 ΔD6 P1 P2 P3 P4

32

RackCU Design

• Selective parity update phase: the collector rack R1 renew the
parity chunks

2

R1 R2 R3 R4
R5

ΔD1 ΔD2 ΔD3 ΔD4 ΔD5 ΔD6 P1 P2 P3 P4

2

ΔD1 ΔD2

ΔD5 ΔD6

Needs 8 chunks transmitted across racks

33

Evaluation

• Large-Scale Simulation

• Testbed Experiments

Node Rack Erasure code Chunk size

200 10 RS (12, 4) 4KB

Machine CPU Memory OS Bandwidth

18 virtual

machine

instances

(ecs.g6.large)

2 vCPU

(2.5GHz Intel Xeon Platinum

8269CY)
8GB Ubuntu 18.04 3 Gb/s

Node Rack Erasure code Chunk size

16 8 RS (12, 4) 4KB

34

Impact of update size

• Ob1: RackCU can save the most cross-rack traffic

• Ob2: RackCU is more advantageous with larger update sizes

Larger update sizes

Smaller update sizes

35

Impact of cross-rack bandwidth

• Ob: RackCU improves the update throughput by 106.8%, 88.2%, and
262.2% when compared to CAU, the baseline, and Parix, respectively

36

Conclusions

• RackCU: an optimal Rack-Coordinated Update solution
• A delta-collecting phase and selective parity update phase

• Reaches the lower bound of the cross-rack update traffic

• Simulation, and experiments
• Large scale simulation

• Testbed experiments on Alibaba Cloud ECS

• Source code of RackCU prototype:
• https://github.com/ggw5/RackCU-code

37

Thank You!

Q & A

38

Breakdown Analysis

0

50

100

150

200

CR PPR ECPipe

Repair Algorithm

T
h
p

t
(M

B
/s

)

Baseline RTB TS RepairBoost

➢ Ob#1: The effectiveness of RTB and TS varies across different repair algorithms.

➢ Ob#2: RepairBoost achieves 45.7% and 19.8% higher repair throughput than RTB

and TS, respectively.
39

Impact of erasure coding

➢ Ob: RackCU reduce 33.3%, 54.1%, and 60.4% of the cross-rack update

traffic on average compared to CAU, the baseline, and Parix, respectively

40

