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Background

» Data is growing exponentially and diversified
« Total amount of data in the wild will reach 175ZB by 2025
« Unstructured data is dominant (> 75% of all data)

» Key-value (KV) stores are widely used
» Flexible data model & high scalability
« Simple interface: Put, Get, Scan,...
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Background

» Most KV stores build on log-structured merge tree (LSM-tree)
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Background

> Limitations of LSM-tree based KV stores
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> Distributed KV stores

Background

« KV pairs are partitioned based on consistent hashing

« Each node stores KV pairs in LSM-tree

Hash ring 0-100

Data layout by consistent hashmg !
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Motivation

» Replication makes replicas for each KV pair for fault tolerance

* Primary copy: the main replica, mapped to nodes by consistent hashing
 Redundant copies: remaining replicas, mapped by replication strategy
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Motivation

» Replication makes replicas for each KV pair for fault tolerance
* Primary copy: the main replica, mapped to nodes by consistent hashing
 Redundant copies: remaining replicas, mapped by replication strategy

« Uniform indexing: each node stores primary and redundant copies
together in a single LSM-tree - aggravate read & write amplifications
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Motivation

» Experimental verification on Cassandra & TIKV
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(a) Write amplification under
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(b) Read amplification under
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[ A larger replication factor implies higher write/read amplifications ]




Our Ildea

[ Decoupling primary and redundant copies in storage Iayer]

* Avoid interaction between primary and redundant copies during
reads and writes

How to manage primary and redundant copies separately
after replica decoupling?




Nailve Approaches

» Replica decoupling with multiple LSM-trees (mLSM)
« Each node manages k replicas with k LSM-trees

 If k=3, a node uses one LSM-tree to store primary copies, and two
LSM-trees to store redundant copies from two other nodes
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Nailve Approaches

» Limitations of mLSM
 L1: kx memory overhead: each LSM-tree has its MemTable

If MemTable is m MiB and the cluster size is n, memory cost of
kK LSM-trees is kxmxn MiB

« L2: limited reduction of compaction overhead: each LSM-tree executes
frequent compactions to keep each level fully-sorted

Client writes 200GiB data under triple replication, total compaction
sizes of Cassandra and mLSM are 3.46TiB and 2.72TiB, mLSM only
reduces compaction size by 21%
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Our Design

» DEPART: Replica decoupling for distributed Key-Value storage
 Primary copies: LSM-tree - efficient writes, reads and scans
 Redundant copies: two-layer log - fast writes, tunable trade-off

» Key design points
* Replica differentiation
« Two-layer log with tunable ordering
« Parallel recovery scheme

» Implementation atop Cassandra

Read/Write Recovery Consistency
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Replica Differentiation

» How to differentiate primary and redundant copies?

[ Lightweight replica differentiation
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A node receives a KV pair, computes hash(key) - Get
node ID to which the KV is mapped by consistent hashing




Two-layer Log

» How to manage redundant copies efficiently?

|

Two-layer log with tunable ordering }

« Global log: all redundant copies are appended in a batched manner
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Two-layer Log

» How to manage redundant copies efficiently?

[ Two-layer log with tunable ordering }

» Local logs: split global log into different local logs in the background

Immutable | &= | MemTable | &= Redundant copies
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Two-layer Log

» How to manage redundant copies efficiently?
 Range-based data grouping within local logs

Redundant Primary

Local log LOG

Local log LOG,
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» Each node stores several ranges 2
divide a local log into different groups

» Benefits of range grouping:

Efficient GC: each GC only selects one
group, avoid scanning the whole local log

Efficient recovery: recovery reads only
the corresponding group
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Two-layer Log

» How to manage redundant copies efficiently?

« Data organization within each group
« Each group contains several sorted runs
« KV pairs within a sorted run are fully sorted, but unsorted across sorted runs
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Two-layer Log

» How to adjust the ordering of the two-layer log?
« Set different degrees of ordering based on performance requirements

4 Fewer sorted runs A
Read-dominant workloads / set a high degree of
High read consistency level ordering to favor reads 50-60 | | 58-59

\_ sorted run, sorted run, J

One group
More sorted runs

Write-dominant workloads / set a low degree of -
High write consistency level =~ ordering to favor writes | 50-60 | | 53-59 |..-| 52-60
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One group



Node N,

» How to perform recovery efficiently?

Parallel Recovery

|

Parallel recovery to accelerate data repair }

@ Parallel repair
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@ Parallel write
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When building Merkle trees to detect lost
data, two threads to read primary and
redundant copies in parallel
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Experiments

» Setup:
« 6 nodes (5 storage nodes + 1 client node), 10 Gb/s Ethernet switch
 Workloads: YCSB 0.15.0, 1KB KV pairs, Zipf distribution (0.99)
« Parameters: three replicas, (WCL=ONE, RCL=ONE) by default

» Comparisons:
« Cassandrav3.11.4 VS multiple LSM-trees (mLSM) VS DEPART
 DEPART builds on Cassandra v3.11.4

Server configuration

Machine CPU Memory Disk OS

12-core Intel(R) : _ CentOS 7.6.1810 64-bit
6 nodes Xeon(R) CPU E5-2650 v4 @ 2.20 ~ 52-GIB DDR4 2400 MHz 500 GiB SSD Linux kernel 3.10.0
GHz 4
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Thpt (KOPS)

Micro-benchmarks

» Client first writes 200M KV pairs, followed by 20M reads, 2M scans,
and 200M updates
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(d) Update throughput

Compared to Cassandra, DEPART improves writes, reads, scans and
updates up to 1.43X, 2.43X, 2.68X and 1.44X;
mLSM notably improves reads, but marginal improvements on writes
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Consistency Configurations

» For strong consistency, configurations under triple replication:
(WCL=3, RCL=1), (WCL=2, RCL=2), (WCL=1, RCL=3)
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DEPART consistently improves writes, reads, scans, updates over Cassandra,;
For RCL 2 2, the read gains of DEPART over Cassandra become smaller
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Recovery Performance

» Write 20M, 50M,100M KV pairs; erase data in a node; recover

1007 [ |Cassandra [ DEPART 100+ Build MTs B Compare MTs
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(a) Recovery time (b) Time breakdown

DEPART reduces recovery time of Cassandra by 38-54%; and DEPART
reduces the time costs of Build MTs and Receive&Write by nearly one half
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Impact of Ordering Degree S

» Write & read performance versus ordering degree S

S Write thpt (KOPS)  Read thpt (KOPS)
1 37.2 42.3
10 57.2 31.5
20 64.7 23.1
—» 00 78.4 7.6
Cassandra 45.4 15.4

Increasing S from 1 to oo, the ordering of the two-layer log is relaxed and hence merge-sort
overhead becomes smaller, so write thpt increases but read thpt decreases
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Conclusions

» DEPART: Replica decoupling for high-performance & reliable

distributed KV storage

 Lightweight replica differentiation
« Two-layer log design for redundant copies for fast writes & recovery

« Tunable ordering to balance reads and writes
« Parallel recovery for fast recovery

» More evaluation results and analysis are in the paper

» The source code Is at https://github.com/ustcadsl/depart
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