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Background

➢Data is growing exponentially and diversified

• Total amount of data in the wild will reach 175ZB by 2025

• Unstructured data is dominant (> 75% of all data)

➢Key-value (KV) stores are widely used 

• Flexible data model & high scalability

• Simple interface: Put, Get, Scan,…
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Background

➢Most KV stores build on log-structured merge tree (LSM-tree)
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Background

➢ Limitations of LSM-tree based KV stores
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Background

➢Distributed KV stores

• KV pairs are partitioned based on consistent hashing

• Each node stores KV pairs in LSM-tree
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DynamoDB, Cassandra,

ScyllaDB, HyperDex, TiKV, …

Take Cassandra 

as an example



Motivation

➢Replication makes replicas for each KV pair for fault tolerance

• Primary copy: the main replica, mapped to nodes by consistent hashing

• Redundant copies: remaining replicas, mapped by replication strategy
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replication



Motivation

➢Replication makes replicas for each KV pair for fault tolerance

• Primary copy: the main replica, mapped to nodes by consistent hashing

• Redundant copies: remaining replicas, mapped by replication strategy

• Uniform indexing: each node stores primary and redundant copies 

together in a single LSM-tree  → aggravate read & write amplifications
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Motivation

➢Experimental verification on Cassandra & TiKV
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“No”: one replica

“Double”: two replicas

“Triple”: three replicas

A 5-node cluster

Write 300GiB KV pairs 

Read 30GiB KV pairs

(a) Write amplification under 

different number of replicas 

(b) Read amplification under 

different number of replicas 

A larger replication factor implies higher write/read amplifications



• Avoid interaction between primary and redundant copies during 

reads and writes

Our Idea
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Decoupling primary and redundant copies in storage layer

How to manage primary and redundant copies separately 

after replica decoupling? 



Naïve Approaches

➢Replica decoupling with multiple LSM-trees (mLSM)

• Each node manages k replicas with k LSM-trees

• If k=3, a node uses one LSM-tree to store primary copies, and two 

LSM-trees to store redundant copies from two other nodes
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➢ Limitations of mLSM

• L1: k×memory overhead: each LSM-tree has its MemTable

• L2: limited reduction of compaction overhead: each LSM-tree executes 

frequent compactions to keep each level fully-sorted

Naïve Approaches
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If MemTable is m MiB and the cluster size is n, memory cost of 

k LSM-trees is k×m×n MiB

Client writes 200GiB data under triple replication, total compaction 

sizes of Cassandra and mLSM are 3.46TiB and 2.72TiB, mLSM only 

reduces compaction size by 21%



Our Design

➢DEPART: Replica decoupling for distributed Key-Value storage

• Primary copies: LSM-tree → efficient writes, reads and scans

• Redundant copies: two-layer log → fast writes, tunable trade-off

➢Key design points

• Replica differentiation

• Two-layer log with tunable ordering

• Parallel recovery scheme

➢ Implementation atop Cassandra
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Replica Differentiation

➢How to differentiate primary and redundant copies?

13

Lightweight replica differentiation

A node receives a KV pair, computes hash(key) → Get 

node ID to which the KV is mapped by consistent hashing

Based on simple 

hash computation

→ Low overhead

If node ID=current node, the KV 

is a primary copy;

Otherwise, it is a redundant copy



Two-layer Log
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➢How to manage redundant copies efficiently?

Two-layer log with tunable ordering

• Global log: all redundant copies are appended in a batched manner

Write to global log in a 

batched & appended manner 

→ efficient writes
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Two-layer Log
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➢How to manage redundant copies efficiently?

Two-layer log with tunable ordering

• Local logs: split global log into different local logs in the background

Split global log into local logs →

Fine-grained management, 

efficient writes & reads 

for redundant copies
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…Local log Local log
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LOGi: stores redundant copies whose primary reside in node i



Two-layer Log
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➢How to manage redundant copies efficiently?

• Range-based data grouping within local logs

➢Each node stores several ranges →
divide a local log into different groups

➢Benefits of range grouping：

Efficient GC: each GC only selects one 

group, avoid scanning the whole local log

Efficient recovery: recovery reads only 

the corresponding group



Two-layer Log
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➢How to manage redundant copies efficiently?

• Data organization within each group

• Each group contains several sorted runs

• KV pairs within a sorted run are fully sorted, but unsorted across sorted runs

Adjust number of sorted runs (S)

Fewer sorted runs: high ordering, better read performance

More sorted runs: low ordering, better write performance



Two-layer Log
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➢How to adjust the ordering of the two-layer log?

• Set different degrees of ordering based on performance requirements

50-60 53-59
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Fewer sorted runs

More sorted runs
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sorted run0 sorted run1 sorted runi
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set a low degree of 

ordering to favor writes

One group
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Parallel Recovery
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➢How to perform recovery efficiently?

Parallel recovery to accelerate data repair 

When building Merkle trees to detect lost 

data, two threads to read primary and 

redundant copies in parallel

When repairing multiple ranges, reading 

primary and redundant copies in parallel



Experiments

➢Setup:

• 6 nodes (5 storage nodes + 1 client node), 10 Gb/s Ethernet switch

• Workloads: YCSB 0.15.0, 1KB KV pairs, Zipf distribution (0.99)

• Parameters: three replicas, (WCL=ONE, RCL=ONE) by default

➢Comparisons:

• Cassandra v3.11.4 VS  multiple LSM-trees (mLSM) VS DEPART

• DEPART builds on Cassandra v3.11.4 
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Machine CPU Memory Disk OS

6 nodes
12-core Intel(R)

Xeon(R) CPU E5-2650 v4 @ 2.20 

GHz 4

32-GiB DDR4 2400 MHz 500 GiB SSD
CentOS 7.6.1810 64-bit 

Linux kernel 3.10.0

Server configuration



Micro-benchmarks

➢Client first writes 200M KV pairs, followed by 20M reads, 2M scans, 

and 200M updates
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Compared to Cassandra, DEPART improves writes, reads, scans and 

updates up to 1.43X, 2.43X, 2.68X and 1.44X;

mLSM notably improves reads, but marginal improvements on writes



➢For strong consistency, configurations under triple replication: 
(WCL=3, RCL=1), (WCL=2, RCL=2), (WCL=1, RCL=3)

Consistency Configurations
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DEPART consistently improves writes, reads, scans, updates over Cassandra; 

For RCL ≥ 2, the read gains of DEPART over Cassandra become smaller



➢Write 20M, 50M,100M KV pairs; erase data in a node; recover

Recovery Performance
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DEPART reduces recovery time of Cassandra by 38-54%; and DEPART 

reduces the time costs of Build MTs and Receive&Write by nearly one half



➢Write & read performance versus ordering degree S

Impact of Ordering Degree S
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Increasing S from 1 to ∞, the ordering of the two-layer log is relaxed and hence merge-sort 

overhead becomes smaller, so write thpt increases but read thpt decreases 



Conclusions

➢DEPART: Replica decoupling for high-performance & reliable 

distributed KV storage

• Lightweight replica differentiation

• Two-layer log design for redundant copies for fast writes & recovery

• Tunable ordering to balance reads and writes

• Parallel recovery for fast recovery

➢More evaluation results and analysis are in the paper

➢The source code is at https://github.com/ustcadsl/depart
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Thanks for your attention!

Q&A

ykli@ustc.edu.cn
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