SitES A ERETFHERS

High-Performance and Reliable Key-Value Stores

Z=KIH BI#GR
http://staff.ustc.edu.cn/~yKkli/

AL L TR

S University of Science and Technology of China

Joint work with Qiang Zhang, Patrick P. C. Lee, Yinlong Xu, Si Wu

1

Background

» Data is growing exponentially and diversified
« Total amount of data in the wild will reach 175ZB by 2025
« Unstructured data is dominant (> 75% of all data)

» Key-value (KV) stores are widely used
» Flexible data model & high scalability
« Simple interface: Put, Get, Scan,...

&
\/

= a2 1114

levelpB cassandra

Google Facebook Apache PingCAP

Background

» Most KV stores build on log-structured merge tree (LSM-tree)

Multiple levels

Level O | WAL Log-structured writes
wcompac“on ' Data blockT | Sorted in each level
Level 1 /«/ Data block2 _
Y S == w/" Data block3 KVs
Lovel 2 y : | Advantages:
eve L
— — B'zomb‘i"tekr Efficient writes, scans
" DR Index bloc : -
“eeo_ [Footer high scalability
Leveln GH) GRS) GHED B SSTable

Background

> Limitations of LSM-tree based KV stores

Level O

Level 1

Level 2

Level n

H

wCompactlon -
7’
,/

’

\\
~
~
~
~
~
~
~
~
~,
~
~~

Data block1 |

Data block?2

Data block3

Bloom filter -

Index block

Footer

SSTable

- KVs

High Read
Amplification

High Write
Amplification

v

UniIKV@ICDE 2020
DIff KV@ATC 2021

> Distributed KV stores

Background

« KV pairs are partitioned based on consistent hashing

« Each node stores KV pairs in LSM-tree

Hash ring 0-100

Data layout by consistent hashmg !

[0-10 || |[11-20] 2130 31-40 41501
[5160] [6170] 8190 91100 3\\6[) []'"R“SSTay

Internal storage structure (LSM-tree)

Coordmator (designated by client)

..........

DynamoDB, Cassandra,

ScyllaDB, HyperDex, TiKV, ...

< Take Cassandra

as an example

Motivation

» Replication makes replicas for each KV pair for fault tolerance

* Primary copy: the main replica, mapped to nodes by consistent hashing
 Redundant copies: remaining replicas, mapped by replication strategy

"\,_-1-"" '\H .-_.-' P
-______ _,-"___.-"'
71- ﬂll]l - 21-3&]
I ™,

ﬁ"’"ﬂ Ny
2"\«51 -400{ 0-10, ‘g
\ / .
(N B1-90° | /120 N,)
@1 &1-7T0 f’ \ 3140 4
H{Emn 41-50‘|>.—X
Nﬂ | --MNEH . .
K% replication

Hash ring 0-100

Data layout by consistent hashmg

lﬂ1ﬂ (1.20] (3140)| (4150 [n-m] | 11-20 | [214{1] [3140 | [41-50]‘
|51ﬁ“ [Mm Tum aua-u 91-100 |51f“] [5‘!:—:"“] [T‘!fﬂ] [ﬂ‘_ll-!_i'ﬂ] |91I-1m]

N, N, N, N- N,

Cm:rrdmat:}r {demgnat«ed by c:llent]

Motivation

» Replication makes replicas for each KV pair for fault tolerance
* Primary copy: the main replica, mapped to nodes by consistent hashing
 Redundant copies: remaining replicas, mapped by replication strategy

« Uniform indexing: each node stores primary and redundant copies
together in a single LSM-tree - aggravate read & write amplifications

-
/ MemTable | = | MemTable
P P P /'I Memory copies
v v v K . m
/| Disk ‘
Primary Primary Primary /' Level O i WAL |
copies copies copies ¥ oo '
Redundant Redundant Redundant]| Level 1
copies copies copies -
v v v \ -
NOde 1 NOde n \Leveln /

e.g., Cassandra, ScyllaDB, TiKV, HBase, HyperDex

Motivation

» Experimental verification on Cassandra & TIKV

" |No [Double [Triple 40- No [N Double [Triple “No”: one replica
34.6
50.9 _(% “Double”: two replicas
e 30 “Triple”: three replicas
S
=20
O
’_3_10 A 5-node cluster
E Write 300GiB KV pairs
Read 30GiB KV pairs
Cassandra TiKV

Cassandra TIKV

(a) Write amplification under
different number of replicas

(b) Read amplification under
different number of replicas

[A larger replication factor implies higher write/read amplifications]

Our Ildea

[Decoupling primary and redundant copies in storage Iayer]

* Avoid interaction between primary and redundant copies during
reads and writes

How to manage primary and redundant copies separately
after replica decoupling?

Nailve Approaches

» Replica decoupling with multiple LSM-trees (mLSM)
« Each node manages k replicas with k LSM-trees

 If k=3, a node uses one LSM-tree to store primary copies, and two
LSM-trees to store redundant copies from two other nodes

4 N

PN PN PN
BfioEy @aaEs Redundant copies Redundant copies
k y £op from node N;_, % n from node N;_,% n /
Node N,

n: the number of physical nodes

Nailve Approaches

» Limitations of mLSM
 L1: kx memory overhead: each LSM-tree has its MemTable

If MemTable is m MiB and the cluster size is n, memory cost of
kK LSM-trees is kxmxn MiB

« L2: limited reduction of compaction overhead: each LSM-tree executes
frequent compactions to keep each level fully-sorted

Client writes 200GiB data under triple replication, total compaction
sizes of Cassandra and mLSM are 3.46TiB and 2.72TiB, mLSM only
reduces compaction size by 21%

11

Our Design

» DEPART: Replica decoupling for distributed Key-Value storage
 Primary copies: LSM-tree - efficient writes, reads and scans
 Redundant copies: two-layer log - fast writes, tunable trade-off

» Key design points
* Replica differentiation
« Two-layer log with tunable ordering
« Parallel recovery scheme

» Implementation atop Cassandra

Read/Write Recovery Consistency

T i £

Data distribution via consistent hashing
i g =
Replica differentiation
P ~

Primary copies Redundant copies

PN

LSM-tree
k Node N,

Two-layer log

)

12

Replica Differentiation

» How to differentiate primary and redundant copies?

[Lightweight replica differentiation
Client
s § d repones [{ \ Based on simple
= Hash(key) Replica differentiation I
5 T 1 plica diffe . == | hash computation
/| Response e SN esponse
S Data distribution / L . A - Low overhead
§ (via consistent hashing) ! 4 : N N
/ I
© lForward requests ," Melr'InT ‘---E r-- :Mﬁm-r
] 1
i \:\ / FIush]J i i UFIush
QQ\'\c? re[i+iCa "eb/,b H Py __*___‘ f_t__‘ l:]
N e R | WAL} || waLy OO
““&Primary copies Redundant copie
If node ID=current node, the KV

Storage cluster

IS a primary copy;
Otherwise, it is a redundant copy

13

A node receives a KV pair, computes hash(key) - Get
node ID to which the KV is mapped by consistent hashing

Two-layer Log

» How to manage redundant copies efficiently?

|

Two-layer log with tunable ordering }

« Global log: all redundant copies are appended in a batched manner

Immutable | &= | MemTable | &= Redundant copies
Memory 3 1
Disk UBatch append ﬁ/\-/*i-f" Write to global log in a
el
Global log C] C] ‘ batched & appended manner
- efficient writes

Head

Tail

14

Two-layer Log

» How to manage redundant copies efficiently?

[Two-layer log with tunable ordering }

» Local logs: split global log into different local logs in the background

Immutable | &= | MemTable | &= Redundant copies

Memory 3 1
. X
Disk Y Baten T AL
Global log C] E.Q--:--.MIE:>A split
ond /\ —_ Split global log into local logs =
Fine-grained management,
Split into local logs ‘
'/ P | \\ efficient writes & reads
[Local log] [Local log] [Local log] for redundant copies

LOGi: stores redundant copies whose primary reside in node i s

Two-layer Log

» How to manage redundant copies efficiently?
 Range-based data grouping within local logs

Redundant Primary

Local log LOG

Local log LOG,

Node N, Node N, Node N, Node N, Node N,
wn
2
3 71-80
f[Co-to [
2 : :
a9 |(81-90 : : 61-70
S : i |(71-80 81.90
] rnd | >
_________________________________ S
6roup0 seament] ...) eroup 0)
[0,10] [= [11,20]
Group 1 Group 1
[51,60] [61,70]
NS DA —/

» Each node stores several ranges 2
divide a local log into different groups

» Benefits of range grouping:

Efficient GC: each GC only selects one
group, avoid scanning the whole local log

Efficient recovery: recovery reads only
the corresponding group

16

Two-layer Log

» How to manage redundant copies efficiently?

« Data organization within each group
« Each group contains several sorted runs
« KV pairs within a sorted run are fully sorted, but unsorted across sorted runs

S
JA_

@ X _ R
-0 [0~]<"_'__ [Segment...][] [J
Group [0,10] Group [51,60] \\\ sorted run, sorted run; sorted run,

__ PA [51,60] [53,59] [52,60]

Local log LOG, Group [51,60]

SEE EEE EEE EEE S EEE B EEE EEE B EEE EEE BN B EEE B B BN B B B B B B B B B B B B B e B B

] Adjust number of sorted runs (S) \
|

| :
I l

Fewer sorted runs: high ordering, better read performance
More sorted runs: low ordering, better write performance

Two-layer Log

» How to adjust the ordering of the two-layer log?
« Set different degrees of ordering based on performance requirements

4 Fewer sorted runs A
Read-dominant workloads / set a high degree of
High read consistency level ordering to favor reads 50-60 | | 58-59

_ sorted run, sorted run, J

One group
More sorted runs

Write-dominant workloads / set a low degree of -
High write consistency level =~ ordering to favor writes | 50-60 | | 53-59 |..-| 52-60

\sorted run, sorted run, sorted run;

One group

Node N,

» How to perform recovery efficiently?

Parallel Recovery

|

Parallel recovery to accelerate data repair }

@ Parallel repair

[11, 20] + [21, 30]

@ Parallel write
%

Primary copies Redundant copies

N i [Global log :

1

[11,200 ! e | !
A : Local log 1

(1) Build Merkle tree (empty)

When repairing multiple ranges, reading
primary and redundant copies in parallel

@ Parallel read

= Primary copies Redundant copies
LA iy il

P I Global lo !

P | ISEEITE |
2 P [[[11,20] l
[21, 30] L | :
O 1 Localleg |
v [21, 30] L[11, 20]

Q) Build Merkle tree

@

Compare
Merkle trees

]4

When building Merkle trees to detect lost
data, two threads to read primary and
redundant copies in parallel

19

Experiments

» Setup:
« 6 nodes (5 storage nodes + 1 client node), 10 Gb/s Ethernet switch
 Workloads: YCSB 0.15.0, 1KB KV pairs, Zipf distribution (0.99)
« Parameters: three replicas, (WCL=ONE, RCL=ONE) by default

» Comparisons:
« Cassandrav3.11.4 VS multiple LSM-trees (mLSM) VS DEPART
 DEPART builds on Cassandra v3.11.4

Server configuration

Machine CPU Memory Disk OS

12-core Intel(R) : _ CentOS 7.6.1810 64-bit
6 nodes Xeon(R) CPU E5-2650 v4 @ 2.20 ~ 52-GIB DDR4 2400 MHz 500 GiB SSD Linux kernel 3.10.0
GHz 4

20

Thpt (KOPS)

Micro-benchmarks

» Client first writes 200M KV pairs, followed by 20M reads, 2M scans,
and 200M updates

B
o

[|Cassandra [l DEPART

1 EE mLSM 71.1 80+
60.4 59.3)
49.5:::5' (al 60'
42.4p g
— 404
a
=
— 204

0 | :
(WCL=3,RCL=1) (WCL=1,RCL=1)

(a) Write throughput

| |Cassandra [DEPART

(WCL=3,RCL=1) (WCL=1,RCL=1)
(b) Read throughput

14

8.3

3.1

oON B~ O

(WCL=3,RCL=1) (WCL=1,RCL=1)
(¢) Scan throughput

Thpt (KOPS)
N
=

120

(o)
o

| |Cassandra [DEPART
mLSM
86.6
76.8
72.1
61.1 60.1
53.1 Casi =
I

0
(WCL=3,RCL=1) (WCL=1,RCL=1

(d) Update throughput

Compared to Cassandra, DEPART improves writes, reads, scans and
updates up to 1.43X, 2.43X, 2.68X and 1.44X;
mLSM notably improves reads, but marginal improvements on writes

21

o
o

(@]
o

SN

Thpt (KOPS)
=

N
o

(@)

Consistency Configurations

» For strong consistency, configurations under triple replication:
(WCL=3, RCL=1), (WCL=2, RCL=2), (WCL=1, RCL=3)

E Cassandra [l DEPART 80, [|Cassandra - DEPART 120, [|Cassandra [DEPART 12, [_]Cassandra - DEPART
T 647 699 o - ’_\1 001 ii.a. gsl mLSM ——— 10+ 91
60.9 (7)) i 53.7 wn 76.8 n
55.1 o o i o 80 72.9 Q. 8- i)
= EL WS S 61, O O -
=5 e 40 £ EREEED 36.1 e 60] 5§r1 e I EaEnsEs v 6 |
hoed %5 fio6 3 = a5 by 4.1
_g' 20 I E _E: 15 ‘:::::” 22 9:] _8' 40 3l _8' 4' I ':;ﬁ 33
1 FEEEE A 114.3 2.4 [HEE 2 2 21
- E E ;f;g-;lh 20, "2 B g
iEgas 0 st EEsiEs [._ i 0 0 Exisd
WCL=3 WCL=2 WCL=1 WCL=3 WCL=2 WCL=1 WCL=3 WCL=2 WCL=1 WCL=3 WCL=2 WCL=1
RCL =1 RCL=2 RCL=3 RCL =1 RCL=2 RCL=3 RCL =1 RCL=2 RCL=3 RCL =1 RCL=2 RCL=3
(a) Write throughput (b) Read throughput (c) Update throughput (d) Scan throughput

DEPART consistently improves writes, reads, scans, updates over Cassandra,;
For RCL 2 2, the read gains of DEPART over Cassandra become smaller

22

Recovery Performance

» Write 20M, 50M,100M KV pairs; erase data in a node; recover

1007 [|Cassandra [DEPART 100+ Build MTs B Compare MTs
~ 80 | | Receive&Write [l Others
ﬁ 80 72.4 §] __100M
2 60 £ 60
I= 452 g
o 40 260 o 401 50M
= 201 g, iﬁ-“ 200 B o
> 41 Hetasnis
01 I umn o Z . | , ,
20M 50M 100M CassadPpePART - cagsandfPpepART
(a) Recovery time (b) Time breakdown

DEPART reduces recovery time of Cassandra by 38-54%; and DEPART
reduces the time costs of Build MTs and Receive&Write by nearly one half

23

Impact of Ordering Degree S

» Write & read performance versus ordering degree S

S Write thpt (KOPS) Read thpt (KOPS)
1 37.2 42.3
10 57.2 31.5
20 64.7 23.1
—» 00 78.4 7.6
Cassandra 45.4 15.4

Increasing S from 1 to oo, the ordering of the two-layer log is relaxed and hence merge-sort
overhead becomes smaller, so write thpt increases but read thpt decreases

24

Conclusions

» DEPART: Replica decoupling for high-performance & reliable

distributed KV storage

 Lightweight replica differentiation
« Two-layer log design for redundant copies for fast writes & recovery

« Tunable ordering to balance reads and writes
« Parallel recovery for fast recovery

» More evaluation results and analysis are in the paper

» The source code Is at https://github.com/ustcadsl/depart

25

Thanks for your attention!
Q&A
yvkli@ustc.edu.cn

X University of Science and Technology of China

26

