
高性能高可靠键值存储系统
High-Performance and Reliable Key-Value Stores

李永坤副教授

http://staff.ustc.edu.cn/~ykli/

1
Joint work with Qiang Zhang, Patrick P. C. Lee, Yinlong Xu, Si Wu

Background

➢Data is growing exponentially and diversified

• Total amount of data in the wild will reach 175ZB by 2025

• Unstructured data is dominant (> 75% of all data)

➢Key-value (KV) stores are widely used

• Flexible data model & high scalability

• Simple interface: Put, Get, Scan,…

2

Google Facebook Apache PingCAP

Background

➢Most KV stores build on log-structured merge tree (LSM-tree)

3

KVs

Level 0

Level 1

Level n …

…Level 2 …
…

Memory

Disk

SSTable

MemTable
Immutable

MemTable

WAL

KV pairs

Multiple levels

Log-structured writes

Sorted in each level

Advantages:

Efficient writes, scans

high scalability

Compaction

Background

➢ Limitations of LSM-tree based KV stores

4

KVs

Level 0

Level 1

Level n …

…Level 2 …
…

Memory

Disk

SSTable

MemTable
Immutable

MemTable

WAL

KV pairs
High Read

Amplification

High Write

Amplification
Compaction

UniKV@ICDE 2020

DiffKV@ATC 2021

Background

➢Distributed KV stores

• KV pairs are partitioned based on consistent hashing

• Each node stores KV pairs in LSM-tree

5

DynamoDB, Cassandra,

ScyllaDB, HyperDex, TiKV, …

Take Cassandra

as an example

Motivation

➢Replication makes replicas for each KV pair for fault tolerance

• Primary copy: the main replica, mapped to nodes by consistent hashing

• Redundant copies: remaining replicas, mapped by replication strategy

6

replication

Motivation

➢Replication makes replicas for each KV pair for fault tolerance

• Primary copy: the main replica, mapped to nodes by consistent hashing

• Redundant copies: remaining replicas, mapped by replication strategy

• Uniform indexing: each node stores primary and redundant copies

together in a single LSM-tree → aggravate read & write amplifications

7

Node 1 … Node n

Redundant
copies

Primary
copies

Redundant
copies

Primary
copies

Redundant
copies

Primary
copies

e.g., Cassandra, ScyllaDB, TiKV, HBase, HyperDex

Motivation

➢Experimental verification on Cassandra & TiKV

8

“No”: one replica

“Double”: two replicas

“Triple”: three replicas

A 5-node cluster

Write 300GiB KV pairs

Read 30GiB KV pairs

(a) Write amplification under

different number of replicas

(b) Read amplification under

different number of replicas

A larger replication factor implies higher write/read amplifications

• Avoid interaction between primary and redundant copies during

reads and writes

Our Idea

9

Decoupling primary and redundant copies in storage layer

How to manage primary and redundant copies separately

after replica decoupling?

Naïve Approaches

➢Replica decoupling with multiple LSM-trees (mLSM)

• Each node manages k replicas with k LSM-trees

• If k=3, a node uses one LSM-tree to store primary copies, and two

LSM-trees to store redundant copies from two other nodes

10

Primary copies

…

Node Ni

Redundant copies

from node Ni−1 % n

Redundant copies

from node Ni−2 % n

n: the number of physical nodes

… …

➢ Limitations of mLSM

• L1: k×memory overhead: each LSM-tree has its MemTable

• L2: limited reduction of compaction overhead: each LSM-tree executes

frequent compactions to keep each level fully-sorted

Naïve Approaches

11

If MemTable is m MiB and the cluster size is n, memory cost of

k LSM-trees is k×m×n MiB

Client writes 200GiB data under triple replication, total compaction

sizes of Cassandra and mLSM are 3.46TiB and 2.72TiB, mLSM only

reduces compaction size by 21%

Our Design

➢DEPART: Replica decoupling for distributed Key-Value storage

• Primary copies: LSM-tree → efficient writes, reads and scans

• Redundant copies: two-layer log → fast writes, tunable trade-off

➢Key design points

• Replica differentiation

• Two-layer log with tunable ordering

• Parallel recovery scheme

➢ Implementation atop Cassandra

12

Replica Differentiation

➢How to differentiate primary and redundant copies?

13

Lightweight replica differentiation

A node receives a KV pair, computes hash(key) → Get

node ID to which the KV is mapped by consistent hashing

Based on simple

hash computation

→ Low overhead

If node ID=current node, the KV

is a primary copy;

Otherwise, it is a redundant copy

Two-layer Log

14

➢How to manage redundant copies efficiently?

Two-layer log with tunable ordering

• Global log: all redundant copies are appended in a batched manner

Write to global log in a

batched & appended manner

→ efficient writes

…Global log

Immutable
Memory

Disk Batch append
WAL

Redundant copiesMemTable

Head Tail

Segment

Two-layer Log

15

➢How to manage redundant copies efficiently?

Two-layer log with tunable ordering

• Local logs: split global log into different local logs in the background

Split global log into local logs →

Fine-grained management,

efficient writes & reads

for redundant copies

…Global log

Immutable
Memory

Disk Batch append
WAL

Redundant copiesMemTable

Head Tail

Segment A split

…Local log Local log

Split into local logs

Local log

LOGi: stores redundant copies whose primary reside in node i

Two-layer Log

16

➢How to manage redundant copies efficiently?

• Range-based data grouping within local logs

➢Each node stores several ranges →
divide a local log into different groups

➢Benefits of range grouping：

Efficient GC: each GC only selects one

group, avoid scanning the whole local log

Efficient recovery: recovery reads only

the corresponding group

Two-layer Log

17

➢How to manage redundant copies efficiently?

• Data organization within each group

• Each group contains several sorted runs

• KV pairs within a sorted run are fully sorted, but unsorted across sorted runs

Adjust number of sorted runs (S)

Fewer sorted runs: high ordering, better read performance

More sorted runs: low ordering, better write performance

Two-layer Log

18

➢How to adjust the ordering of the two-layer log?

• Set different degrees of ordering based on performance requirements

50-60 53-59

sorted run0 sorted run1

Fewer sorted runs

More sorted runs

50-60 53-59 52-60…

sorted run0 sorted run1 sorted runi

Read-dominant workloads /

High read consistency level

set a high degree of

ordering to favor reads

Write-dominant workloads /

High write consistency level

set a low degree of

ordering to favor writes

One group

One group

Parallel Recovery

19

➢How to perform recovery efficiently?

Parallel recovery to accelerate data repair

When building Merkle trees to detect lost

data, two threads to read primary and

redundant copies in parallel

When repairing multiple ranges, reading

primary and redundant copies in parallel

Experiments

➢Setup:

• 6 nodes (5 storage nodes + 1 client node), 10 Gb/s Ethernet switch

• Workloads: YCSB 0.15.0, 1KB KV pairs, Zipf distribution (0.99)

• Parameters: three replicas, (WCL=ONE, RCL=ONE) by default

➢Comparisons:

• Cassandra v3.11.4 VS multiple LSM-trees (mLSM) VS DEPART

• DEPART builds on Cassandra v3.11.4

20

Machine CPU Memory Disk OS

6 nodes
12-core Intel(R)

Xeon(R) CPU E5-2650 v4 @ 2.20

GHz 4

32-GiB DDR4 2400 MHz 500 GiB SSD
CentOS 7.6.1810 64-bit

Linux kernel 3.10.0

Server configuration

Micro-benchmarks

➢Client first writes 200M KV pairs, followed by 20M reads, 2M scans,

and 200M updates

21

Compared to Cassandra, DEPART improves writes, reads, scans and

updates up to 1.43X, 2.43X, 2.68X and 1.44X;

mLSM notably improves reads, but marginal improvements on writes

➢For strong consistency, configurations under triple replication:
(WCL=3, RCL=1), (WCL=2, RCL=2), (WCL=1, RCL=3)

Consistency Configurations

22

DEPART consistently improves writes, reads, scans, updates over Cassandra;

For RCL ≥ 2, the read gains of DEPART over Cassandra become smaller

➢Write 20M, 50M,100M KV pairs; erase data in a node; recover

Recovery Performance

23

DEPART reduces recovery time of Cassandra by 38-54%; and DEPART

reduces the time costs of Build MTs and Receive&Write by nearly one half

➢Write & read performance versus ordering degree S

Impact of Ordering Degree S

24

Increasing S from 1 to ∞, the ordering of the two-layer log is relaxed and hence merge-sort

overhead becomes smaller, so write thpt increases but read thpt decreases

Conclusions

➢DEPART: Replica decoupling for high-performance & reliable

distributed KV storage

• Lightweight replica differentiation

• Two-layer log design for redundant copies for fast writes & recovery

• Tunable ordering to balance reads and writes

• Parallel recovery for fast recovery

➢More evaluation results and analysis are in the paper

➢The source code is at https://github.com/ustcadsl/depart

25

Thanks for your attention!

Q&A

ykli@ustc.edu.cn

26

