
重新思考Web 场景下的事务抽象
与SQL优化问题

Zhaoguo Wang



Recent 3-4 Years

1

Machine 
Learning

Formal  
Verification

Web 
Application

Database 
System

XIndex   (PPoPP 2020, APSys 2020, TOS 2022 )

PODC 2019

PolyJuice (OSDI 2021)

WeTune (SIGMOD 2022)

Concerto (SIGMOD 2022)

Transaction Processing

Concurrent Index

Consensus

SQL Optimization



Database has a long history

2

TXN Concept
(1976)

ACI à ACID
(1983)

Weak isolation
(1995) …1960s

Charles Bachman
(1973 Turing Award)

Transaction

SQL
Relational Model

(1970)
SEQUEL
(1974)

ISO Standard
(1986)

…



The most popular database application: 
web applications
• Web applications are already integrated in our daily life: 

socialization, entertainment, work, etc.

• They unanimously use one or more database systems to 
manage and access their data.

3



Web apps are constantly evolving

4

Web dictionary
(1994)

Search engine
(1998)

Social network
(2004)

Mobile apps
(2008)

…



A simple question
• Does the decade-old database transaction abstraction and 

SQL optimization methods still fit web applications today?

5

First paper
(1976)

ACI à ACID
(1983)

Weak isolation
(1995)

Web dictionary
(1994)

Search engine
(1998)

Social network
(2004)

Mobile apps
(2008)

?
Relational Model

(1970)
SEQUEL
(1970)

ISO Standard
(1986)



What is the answer?

Existing works: Query Abstraction 
(SQL v.s. NOSQL)

6

This Talks

Transaction Abstraction

Query Optimization



Transaction Abstraction

7

Ad Hoc Transactions in Web Applications:
The Good, the Bad, and the Ugly

Chuzhe Tang, Zhaoguo Wang, Xiaodong Zhang, Qianmian Yu
Binyu Zang, Haibing Guan, Haibo Chen



How do applications today use 
transaction?
• Intuitively, database transactions.

8

DB

ORM layer

Begin Transaction;
# the actual work
Commit Transaction;

App server
obj = ORM.getX(id)
-> Select * From …

obj.save()
-> Update/Insert …



How do applications today use 
transaction?
• Bailis et al. identified another application-level approach:

invariant validation.
• Developers specify invariants; ORMs validate them.

9Bailis et al. Feral Concurrency Control: An Empirical Investigation of Modern Application Integrity. SIGMOD ’15.

App server
class Account:  # => Accounts table
string email  # => email column
validates :email, uniqueness: true

DB

acc = new Account(email: “a@b.com”)
acc.save()

cnt = Select count(*) From Accounts
Where email=“a@b.com”

if cnt == 0:
Insert Into Accounts (email) Values (“a@b.com”)



10

Ruby/Active Record

Python/Django
Java/Hibernate

8 most popular open-source web apps:
Different types, languages and ORM frameworks

Social net
24.6k 🌟

Forum
33.8k 🌟

E-commerce
11.4k 🌟

E-commerce
13.9k 🌟

Project mgmt
4.2k 🌟E-commerce

1.5k 🌟

Access ctrl
16.8k 🌟

Supply chain
1.5k 🌟



Ad hoc transaction

They are the “transactions” coordinated by ad hoc 
constructs (e.g., locks) employed by app developers.

11

App server (add-cart API)
lock(cart_id)
# perform business logic
# use ORM to access DB
unlock(cart_id)

cart locked
1 true
2 false

Server-side lock table

Plain Select/Update/Insert/Delete
(without DB transactions)

Example is simplified from the Broadleaf e-commerce application.

DB



Ad hoc transactions represent a 
third approach

12

DB 
transactions

Invariant 
validation

Ad hoc 
transactions

WHAT is 
protected?

Business logic 
snippets

Invariants on 
DB rows

Business logic 
snippets

WHO conduct 
the protection? DB CC ORMs Developers

What is the state of the practice?



13

Social net
24.6k 🌟

Forum
33.8k 🌟

E-commerce
11.4k 🌟

E-commerce
13.9k 🌟

Project mgmt
4.2k 🌟

E-commerce
1.5k 🌟

Access ctrl
16.8k 🌟

Supply chain
1.5k 🌟



14

Social net
24.6k 🌟

Forum
33.8k 🌟

E-commerce
11.4k 🌟

E-commerce
13.9k 🌟

Project mgmt
4.2k 🌟

E-commerce
1.5k 🌟

Access ctrl
16.8k 🌟

Supply chain
1.5k 🌟

Ad hoc transactions are common in web 
applications and serve critical roles.
- 91 cases among 8 popular open-source web apps
- 71 of them reside in critical APIs (e.g., cart, check-

out, posting).



Answer the following questions.

• How do ad hoc transactions look like?

• Are they correct?

• Do they perform well?

15



Ad hoc transactions have diverse 
semantics
• Their coordination can span many requests.

• 10/91 cases coordinate through multiple requests.

post = ORM.getPost(post_id)
return render(post)initial req

rendered post &

its version

new content &old version
ok/failure

lock(post_id)
current = ORM.getPost(post_id)
if current.ver == prev_version:
current.content = new_content
current.ver += 1
current.save()

unlock(post_id)

Begin Transaction

Commit Transaction

edit locally

DB

How to track
connection?

Using DB transactions is impractical and 
can introduce long-lived transactions.

Editing 
my post

16Example is simplified from the Discourse forum application.



Ad hoc transactions have diverse 
semantics
• They can also coordinate non-DB operations.

• 8/91 cases handle non-DB operations.

lock(post_id)
post = new Post(...)
post.save()
REDIS.add_to_set(
“timeline:”+ follower_id, post_id)

unlock(post_id)

DB

Redis (14, 21/9/20 23:59:59)
(...)

post_id
(sort order)

add_time
“timeline:xx”:

“timeline:yy”: ...

id content
14 foo

… …

Post table

DB transactions (almost) cannot 
coordinate external storage systems 
(e.g., Redis, S3).

17Example is simplified from the Mastodon social network application.



Ad hoc transactions have diverse 
implementations
• They use either locks or validation procedures for 

coordination.

• For locks, there are 7 different implementations among 8 
applications.
• 2 implementations reuse existing locking facilities.
• 2 implementations store lock info in Redis.
• 1 implementations store lock info in DB tables.
• 2 implementations store lock info in application runtime 

containers (e.g., Java’s ConcurrentHashMap).

18



Ad hoc transactions have diverse 
implementations
• For validation procedures, there are also 2 categories.

• One is generated by the ORM according to annotations.

• One is implemented from scratch by developers.
• Developers need to ensure the check-and-update atomicity.
• E.g., the multi-request example shown before.

19

class Person:
string name
@Version
int ver

john = ORM.getPerson(...)
john.setName(“Bob”)
john.save()

Update Persons Set name=“Bob”, ver=john.ver+1
Where id=john.id And ver=john.ver
The DB system ensures version check and update happen atomically.



Ad hoc transactions handle 
failures differently
• Developers do not handle deadlocks, yet we didn’t find 

potential deadlocks.
• Probably due to the reduced number of locks.

• In 6 cases, developers write rollback/repair procedures to 
handle conflicts.

• One application has periodic DB checks (like fsck) to fix 
inconsistency.
• E.g., post referring an absent image.

20



Are ad hoc transactions correct?
• 69 correctness issues are found in 53 cases.

• Some cases suffer from multiple issues.
• 33 cases’ issues are confirmed by developers.

• We consider 28 of them severe.

21

App. Known severe consequences Cases

Discourse Overwritten post contents, page rendering failure, 
excessive notifications. 6

Mastodon Showing deleted posts, corrupted account info., 
incorrect polls. 4

Spree Overcharging, inconsistent stock level, inconsistent 
order status, selling discontinued products. 9

Broadleaf Promotion overuse, inconsistent stock level, 
inconsistent order status, overselling. 6

Saleor Overcharging. 3



Majority of issues stem from wrong 
locking/validation primitives
• 36/65 lock-based ad hoc transactions wrongly implement or 

use locking primitives.

• 11/26 validation-based ad hoc transactions failed to ensure 
check-and-update atomicity.

ORM.transaction:
ok = MiniSql.query(
Update Posts Set version=version+1
Where id=id And version=version)

if not ok:
ORM.abort_transaction()

# perform updates here

MiniSql

MiniSql is independent of the ORM, thus
issuing Update outside of the DB transaction.

22Example is simplified from the Discourse forum application.



Developers sometimes wrongly 
employ ad hoc transactions
• 16 issues are caused by incorrect scope.

• Developers might omit critical operations from coordination in 
existing ad hoc transactions. (11 cases)

• Developers might forget to employ ad hoc transactions for 
conflicting procedures. (5 cases)

• 4 issues are caused by incorrect failure handling.
• E.g., crash during ad hoc transactions introduce invalid 

intermediate states that cause user blocking after reboot.

23



Do ad hoc transactions perform 
well?
• We deployed the applications and evaluated a subset of APIs 

with synthetic workloads.
• In comparison with codebase modified to use DB transactions.

24

0.7x ⬆

0.4x ⬆

0.4x ⬆

1.3x ⬆

0

50

100

150

200

250

300

API 1 API 2 API 3 API 4

API throughput (req/s)
(w/ contention)

0

100

200

300

400

API 1 API 2 API 3 API 4

API throughput (req/s)
(w/o contention)

They use customized
coordination granularities



What does it imply?
• Why do developers not use DB transactions?

• Lacking important functionalities/properties?
• Need better integration with applications?
• Maybe applications are fine with relaxing ACID semantics?

• What should we do?
• Further investigation why they use ad hoc transactions.
• Explore new concurrency abstraction to better suit applications 

today.
• Build tools/Sync. Primitives to improve existing web 

applications.

25



Query Optimization

26

Zhaoguo Wang, Zhou Zhou, Yicun Yang, Haoran Ding, Gansen Hu, Ding 
Ding,  Chuzhe Tang, Haibo Chen, Jinyang Li

WeTune:  Automatic Discovery and Verification of 
Query Rewrite Rules



Background: Query Rewrite

27

Query rewriting is an important step in query optimization.

Query 
Rewriter

SELECT emp.id FROM emp 
LEFT JOIN dept 
ON emp.deptid = dept.id

SELECT emp.id FROM emp

Original Query More Efficient Query

Query Rewrite in Apache Calcite1

1. Begoli et al. Apache Calcite: A Foundational Framework for Optimized Query Processing Over Heterogeneous Data Sources. SIGMOD '18.



Rule-Based Query Rewrite

28

Normally, a rule consists of a pair of logical query plans.

• Source logical plan: match the query.

• Destination logical plan: rewrite the query.

A Rule Example
Source

Destination

Left Join
t0.k0=t1.k1

Input
t0

Proj
t0.c0

Input
t1

Input
t0

Proj
t0.c0

Parser

SELECT emp.id FROM emp 
LEFT JOIN dept 
ON emp.deptid = dept.id

Rule 
Matcher

SELECT emp.id FROM emp

Rule 
Applier

Query Rewrite Workflow in Calcite

Query
Synthesizer

Rule 
Set

and

Query Logical Plan

Rule’s Logical Plan

semantically 
equivalent

Precondition:
k0 references k1



Query Rewriting in Web Applications

29

Existing accumulated rules are far from sufficient to rewrite web 
application queries.

• Miss many rewrite opportunities.

• Survey on 50 GitHub query performance issues:

23
12 9 4

27
38 41 46

0

10

20

30

40

50

SQL Server MySQL PostgreSQL Apache
Calcite

Can rewrite Cannot rewrite



Existing Rules Fail with Web App Queries

30

Counter-intuitive query patterns might not match existing rules.

SELECT * FROM labels
WHERE id IN (

SELECT id FROM labels 
WHERE id IN (

SELECT id FROM labels
WHERE proj_id = 10

) ORDER BY title ASC
)

I have no rule 
matching this query.

items = labels.with_label
(label_names, )

items_projs = projects(items)
......
label_ids = LabelsFinder.new(
current_user, 
project_ids: items_projs).select(:id)

items = items.where(items: {id: label_ids})

Web application queries might be counter-intuitive.

• Pervasively use object-relational mapping (ORM) framework to generate queries.



Drawback of Existing Practice

31

Rules in existing systems are empirically crafted by human's manual 
efforts. 

• Take decades to accumulate rules.

# of Rules 
(SQL Server)

382 420 ? ?

Oops! Nothing has 
really changed ...

2011 Time2022 Future…



Basic Idea:  Automatically Discover Rules 

• Enumerating rules by brute-force.

• Ensure correctness of rules by verification.

Rule 
Enumerator

Rule Verifier

Potential 
Rule

Correct?
T / F

Verified 
Rules

Useful 
Rule 

Selector

Useful 
Rules

WeTune

32



Challenges

33

How to efficiently enumerate rewrite rules?

How to verify correctness of rules?



Input
r2

Input
r1

InSub
a1

Defining Rules

34

Model a rewrite rule: <Qsrc	,	Qdest	,	C>.

• Qsrc	,	Qdest: source/destination plan template.

InSub
a0

Input
r2

Input
r1

InSub
a0’

Input
r2’

Input
r4

Input
r3

InSub
a1

Qsrc Qdest	

Constraints

An new rule found by WeTune

Q1: SELECT * FROM emp 
WHERE emp.deptid IN (SELECT dept.id FROM dept) 
AND emp.deptid IN (SELECT dept.id FROM dept) 

Q2: SELECT * FROM emp 
WHERE emp.deptid IN (SELECT dept.id FROM dept) 

1. r2	=	r2’	=	r4
2. r1	=	r3
3. a0	=	a0’	=	a1
4. a0,	a0’	are from r1

SELECT * FROM emp 
WHERE deptid IN 
(SELECT deptid FROM 

dept)

SELECT * FROM r1
WHERE a1 IN 
(SELECT a1 FROM r2)

Replaced by 
symbols

• C: the precondition of the rule.

• A set of constraints over symbols.

A correct rule means C		=> (Qsrc	≡	Qdest).

Input
dept

Input
emp

InSub
deptid

C

Concrete plan Plan template



Rule Enumerator Overview

35

Rule Enumerator

Plan 
Template 

Enumerator

Constraint 
Enumerator

Promising 
Rule Searcher

Rule 
Verifier

Correct?

Verified 
Rules

Rule 
Enumera

tor

Rule 
Verifier

Verifie
d Rules

Useful 
Rule 

Selector

Useful 
Rules

WeTune

Rule 
Enumerator

...

...



Built-in Rule Verifier Overview

36

What does a rewrite rule look like?

Optimized 
SQL

<Qsrc , Qdest , C>

rewrite

What is the correctness of a rule?

C ➔ (Qsrc  ≡ Qdest )

If the constraints in C are satisfied,  then 
Qsrc and Qdest are equivalent à Proving 
the equivalence of two SQL statements.

Why cannot use existing SQL solvers?

Cosset Only support set semantic
UDP Do not support Outer Join and NULL
SPES Qsrc and Qdest must have the same 

inputs.

Our Solution: 10X powerful

Qsrc  , Qdest

U-semiring
expressions

C FOL

Step 1. Convert Qsrc and Qdest
into U-expressions

Step 2. Convert C ➔ (Qsrc  ≡
Qdest ) into first order logic
formulas.

Step 3. Use SMT solver to 
solve the FOL automatically.



Evaluation

37

Q1. How many new useful rules can WeTune discover? 

Q2. How effective are the discovered useful rules?

Setup: 

• 8518 queries collected from 20 open-source web applications on GitHub.

• Evaluate with SQL Server 2019.



Evaluation

38

Q1. How many new useful rules can WeTune discover?

• Discover 35 useful rules based on 8518 real-world queries.

• 9 are missing in SQL Server and 22 are missing in Apache Calcite.



Evaluation

39

Q2. How effective are the discovered useful rules?

• Rewrite 674 of 8518 queries, SQL Server misses 247 rewrites.

• 13% achieve more than 90% latency reduction.

• Fix 38 of 50 GitHub performance issues.

38
23 12 9 4

12
27 38 41 46

0
10
20
30
40
50

W
eT

un
e

SQL S
er

ve
r

MyS
QL

Pos
tg

re
SQ

L

Apac
he

…

Can rewrite Cannot rewrite



Conclusion

40

Ad hoc transactions are a common approach to 
concurrency control in web applications.

WeTune is a tool that automatically discovers query 
rewrite rules.
https://ipads.se.sjtu.edu.cn:1312/opensource/wetune

https://ipads.se.sjtu.edu.cn/werewriter-demo/home

Does the decade-old database transaction 
abstraction and SQL optimization methods still 
fit web applications today?

https://ipads.se.sjtu.edu.cn:1312/opensource/wetune
https://ipads.se.sjtu.edu.cn/werewriter-demo/home


Questions

41

Thank You!


