R-Store: A Scalable Distributed System for Supporting Real-time Analytics

Feng Li, M. Tamer Ozsu, Gang Chen, Beng Chin Ooi
National University of Singapore

ICDE 2014
Background

• Situation for large scale data processing
 – Systems classified into 2 categories: OLTP, OLAP
 – Data periodically transport to OLAP through ETL

• Demand
 – Time critical decision making (RTOLAP)
 • the freshness of OLAP results
 • Fully RTOLAP entail executing query directly on OLTP data
 – OLAP & OLTP processed by one integrated system
Background

• Problem on simple combination
 – Resource contention
 • OLTP query blocked by OLAP
 – Inconsistency
 • Long running OLAP may access same data sets several times, updates by OLTP could lead to incorrect OLAP results

• Solution – R-Store
 – Resource contention
 • Computation resource isolation
 – Inconsistency
 • Multi-versioning storage system
A glimpse of R-Store

• OLAP query data based on timestamp of query submission from multi-versioning storage system
 – Modified HBase as storage
 – Mapreduce job for query execution

• Periodically materialize real-time data into data cube
 – Fully HBaseScan every time is time-consuming
 • Entire table is scanned & shuffled during MR
 – Streaming Mapreduce to maintain data cube
R-Store Architecture

- OLTP submitted to KV Store
- OLAP query processed by MapReduce
 - Scan on Hbase
- Refresh data cube through streaming MapReduce
- MetaStore to generate query timestamp T_Q & metadata (e.g. T_{DC})
Storage Design based on HBase

- Extend Scan to 2 versions
 - FullScan for querying data cube
 - IncrementalScan for querying real-time data
- Infinite versions of data to maintain query consistency
 - Compaction to remove stale versions
 - Global compaction
 - Immediately following data cube refresh
 - Local compaction
 - Compact old versions not accessed by any scan process
IncrementalScan in detail

• Target: Find out changes since last data cube materialization

• Method
 – Take 2 timestamps as input T_{DC} & T_Q, return the values with largest timestamp before T_{DC} & T_Q

• Implementations
 – Naïve: Accessing memstore & storefile in parallel
 – Adaptive: Maintain key modified since last materialization, first scan memstore, scan or random access keys based on cost
Compaction in detail

• Global compaction
 – Similar to Hbase’s default, retain only one version of each key
 – Triggered by data cube’s refresh completion

• Local compaction
 – Compacted data stored in different file in case block scan process
 – Files can be removed when not accessed by any scan
 – Triggered when #tuple/#key exceeds threshold
Data cube

Define a data cube for “Best Electronics”
Dimensions: city, item, year
Measure: Sales_in_dollars
Data cube maintenance

• Re-computation
 – First run
 – FullScan on one region, generate a KV pair for each cuboid in mapper, aggregate & output in reducer

• Incremental Update
 – Consequent runs
 – Propagation step to computes change & update step to update cube
 – Streaming system updates cube inside & periodically materialize it into storage
HStreaming for cube maintenance

• Each mapper responsible for processing update within a key range
 – Maintain KVs locally, cache hot keys in memory
 – For updates, emit 2 KV pair for each cubiod(+, -)

• Reducer cache the output KV of mapper and invoke reduce every W_r, refresh cube every W_{cube}
1. Updates arrives Hbase-R
2. stream updates to a Hstreaming mapper
3. Reducer periodically materialize local data cube to Hbase-R & notifies Metastore
RTOLAP query processing

Map
Tag the values with ‘Q’ ‘+’, ‘-’

Reduce
Do calculation based on aggregation function & three values
Evaluation

• Cluster of 144 nodes
 – Intel X3430 2.4 GHz processor
 – 8 GB of memory
 – 2x500 GB SATA disks
 – gigabit Ethernet

• TPC-H data
Performance of Maintaining Data cube

Hstreaming with 10 nodes have higher throughput than 40 Hbase-R nodes.

1.6 billion keys, 1% updated, update algorithm fast enough, latency equals to Hbase-R input speed.
Performance of RT querying

Small key range updates scans fewer data in Hbase-R, process fewer data.
Performance of OLTP

(a) Throughput
(b) Latency
Related Work

• Database
 – C-Store(VLDB 05)

• Main-memory database
 – HyPer(ICDE 11), HYRISE(VLDB 10)

• Druid(SIGMOD 14)
Conclusion

• Multi-version concurrent control to support RTOLAP
• Data cube to reduce storage requirement & improve performance
• Streaming system to refresh data cube